- -

Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review

Mostrar el registro completo del ítem

Oltra-Sastre, M.; Fuster García, E.; Juan -Albarracín, J.; Sáez Silvestre, C.; Perez-Girbes, A.; Sanz-Requena, R.; Revert-Ventura, A.... (2019). Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review. Current Medical Imaging Reviews. 15(10):933-947. https://doi.org/10.2174/1573405615666190109100503

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163477

Ficheros en el ítem

Metadatos del ítem

Título: Multi-parametric MR Imaging Biomarkers Associated to Clinical Outcomes in Gliomas: A Systematic Review
Autor: Oltra-Sastre, Miquel Fuster García, Elíes Juan -Albarracín, Javier Sáez Silvestre, Carlos Perez-Girbes, Alexandre Sanz-Requena, Roberto Revert-Ventura, Antonio Mocholí Salcedo, Antonio Urchueguía Schölzel, Javier Fermín Hervás, Antonio Reynes, Gaspar Font-de-Mora, Jaime Muñoz-Langa, Jose Botella, Carlos Aparici, Fernando Garcia-Gomez, Juan M
Entidad UPV: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica
Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Fecha difusión:
Resumen:
[EN] Purpose: To systematically review evidence regarding the association of multi-parametric biomarkers with clinical outcomes and their capacity to explain relevant subcompartments of gliomas. Materials and Methods: ...[+]
Palabras clave: Biomarkers , Tumor , Patient outcome assessment , Magnetic resonance imaging , Magnetic resonance spectroscopy , Image processing , Computer-assisted , Glioma , Subependymal
Derechos de uso: Reserva de todos los derechos
Fuente:
Current Medical Imaging Reviews. (issn: 1573-4056 )
DOI: 10.2174/1573405615666190109100503
Editorial:
Bentham Science
Versión del editor: https://doi.org/10.2174/1573405615666190109100503
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//DPI2016-80054-R/ES/BIOMARCADORES DINAMICOS BASADOS EN FIRMAS TISULARES MULTIPARAMETRICAS PARA EL SEGUIMIENTO Y EVALUACION DE LA RESPUESTA A TRATAMIENTO DE PACIENTES CON GLIOBLASTOMA Y CANCER DE/
Agradecimientos:
This work was supported by the Spanish Ministry for Investigation, Development and Innovation project with identification number DPI2016-80054-R.
Tipo: Artículo

References

Louis D.N.; Perry A.; Reifenberger G.; The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016,131(6),803-820

Ostrom Q.T.; Gittleman H.; Fulop J.; CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol 2015,17(Suppl. 4),iv1-iv62

Yachida S.; Jones S.; Bozic I.; Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010,467(7319),1114-1117 [+]
Louis D.N.; Perry A.; Reifenberger G.; The 2016 world health organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 2016,131(6),803-820

Ostrom Q.T.; Gittleman H.; Fulop J.; CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro-oncol 2015,17(Suppl. 4),iv1-iv62

Yachida S.; Jones S.; Bozic I.; Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010,467(7319),1114-1117

Gerlinger M.; Rowan A.J.; Horswell S.; Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012,366(10),883-892

Sottoriva A.; Spiteri I.; Piccirillo S.G.M.; Intratumor heterogeneityin human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci USA 2013,110(10),4009-4014

Whiting P.F.; Rutjes A.W.; Westwood M.E.; QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med 2011,155(8),529-536

Stupp R.; Mason W.P.; van den Bent M.J.; Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005,352(10),987-996

Ponte K.F.; Berro D.H.; Collet S.; In vivo relationship between hypoxia and angiogenesis in human glioblastoma: a multimodal imaging study. J Nucl Med 2017,58(10),1574-1579

Pope W.B.; Kim H.J.; Huo J.; Recurrent glioblastoma multiforme: ADC histogram analysis predicts response to bevacizumab treatment. Radiology 2009,252(1),182-189

Mörén L.; Bergenheim A.T.; Ghasimi S.; Brännström T.; Johansson M.; Antti H.; Metabolomic screening of tumor tissue and serum in glioma patients reveals diagnostic and prognostic information. Metabolites 2015,5(3),502-520

Prager A.J.; Martinez N.; Beal K.; Omuro A.; Zhang Z.; Young R.J.; Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am J Neuroradiol 2015,36(5),877-885

Kickingereder P.; Burth S.; Wick A.; Radiomic profiling of glioblastoma: identifying an imaging predictor of patient survival with improved performance over established clinical and radiologic risk models. Radiology 2016,280(3),880-889

Yoo R-E.; Choi S.H.; Cho H.R.; Tumor blood flow from arterial spin labeling perfusion MRI: a key parameter in distinguishing high-grade gliomas from primary cerebral lymphomas, and in predicting genetic biomarkers in high-grade gliomas. J Magn Reson Imaging 2013,38(4),852-860

Liberman G.; Louzoun Y.; Aizenstein O.; Automatic multi-modal MR tissue classification for the assessment of response to bevacizumab in patients with glioblastoma. Eur J Radiol 2013,82(2),e87-e94

Ramadan S.; Andronesi O.C.; Stanwell P.; Lin A.P.; Sorensen A.G.; Mountford C.E.; Use of in vivo two-dimensional MR spectroscopy to compare the biochemistry of the human brain to that of glioblastoma. Radiology 2011,259(2),540-549

Xintao H.; Wong K.K.; Young G.S.; Guo L.; Wong S.T.; Support vector machine multi-parametric MRI identification of pseudoprogression from tumor recurrence in patients with resected glioblastoma. J Magn Reson Imaging 2011,33(2),296

Ingrisch M.; Schneider M.J.; Nörenberg D.; Radiomic Analysis reveals prognostic information in T1-weighted baseline magnetic resonance imaging in patients with glioblastoma. Invest Radiol 2017,52(6),360-366

Ulyte A.; Katsaros V.K.; Liouta E.; Prognostic value of preoperative dynamic contrast-enhanced MRI perfusion parameters for high-grade glioma patients. Neuroradiology 2016,58(12),1197-1208

O’Neill A.F.; Qin L.; Wen P.Y.; de Groot J.F.; Van den Abbeele A.D.; Yap J.T.; Demonstration of DCE-MRI as an early pharmacodynamic biomarker of response to VEGF Trap in glioblastoma. J Neurooncol 2016,130(3),495-503

Kickingereder P.; Bonekamp D.; Nowosielski M.; Radiogenomics of glioblastoma: machine learning-based classification of molecular characteristics by using multiparametric and multiregional mr imaging features. Radiology 2016,281(3),907-918

Roberto S-R.; Antonio R-V.; Luis M-B.; Angel A-B.; Gracián G-M.; Quantitative mr perfusion parameters related to survival time in high-grade gliomas. European Radiology 2013,23(12),3456-3465

Jain R.; Poisson L.; Narang J.; Genomic mapping and survival prediction in glioblastoma: molecular subclassification strengthened by hemodynamic imaging biomarkers. Radiology 2013,267(1),212-220

Fathi K.A.; Mohseni M.; Rezaei S.; Bakhshandehpour G.; Saligheh R.H.; Multi-parametric (ADC/PWI/T2-W) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme. MAGMA 2015,28(1),13-22

Caulo M.; Panara V.; Tortora D.; Data-driven grading of brain gliomas: a multiparametric MR imaging study. Radiology 2014,272(2),494-503

Alexiou G.A.; Zikou A.; Tsiouris S.; Comparison of diffusion tensor, dynamic susceptibility contrast MRI and (99m)Tc-Tetrofosmin brain SPECT for the detection of recurrent high-grade glioma. Magn Reson Imaging 2014,32(7),854-859

Van Cauter S.; De Keyzer F.; Sima D.M.; Integrating diffusion kurtosis imaging, dynamic susceptibility-weighted contrast-enhanced MRI, and short echo time chemical shift imaging for grading gliomas. Neuro-oncol 2014,16(7),1010-1021

Seeger A.; Braun C.; Skardelly M.; Comparison of three different MR perfusion techniques and MR spectroscopy for multiparametric assessment in distinguishing recurrent high-grade gliomas from stable disease. Acad Radiol 2013,20(12),1557-1565

Chawalparit O.; Sangruchi T.; Witthiwej T.; Diagnostic performance of advanced mri in differentiating high-grade from low-grade gliomas in a setting of routine service. J Med Assoc Thai 2013,96(10),1365-1373

Li Y.; Lupo J.M.; Parvataneni R.; Survival analysis in patients with newly diagnosed glioblastoma using pre- and postradiotherapy MR spectroscopic imaging. Neuro-oncol 2013,15(5),607-617

Shankar J.J.S.; Woulfe J.; Silva V.D.; Nguyen T.B.; Evaluation of perfusion CT in grading and prognostication of high-grade gliomas at diagnosis: a pilot study. AJR Am J Roentgenol 2013,200(5)

Zinn P.O.; Mahajan B.; Sathyan P.; Radiogenomic mapping of edema/cellular invasion MRI-phenotypes in glioblastoma multiforme. PLoS One 2011,6(10)

Matsusue E.; Fink J.R.; Rockhill J.K.; Ogawa T.; Maravilla K.R.; Distinction between glioma progression and post-radiation change by combined physiologic MR imaging. Neuroradiology 2010,52(4),297-306

Juan-Albarracín J.; Fuster-Garcia E.; Manjón J.V.; Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 2015,10(5)

Itakura H.; Achrol A.S.; Mitchell L.A.; Magnetic resonance image features identify glioblastoma phenotypic subtypes with distinct molecular pathway activities. Sci Transl Med 2015,7(303)

Ion-Margineanu A.; Van Cauter S.; Sima D.M.; Tumour relapse prediction using multiparametric MR data recorded during follow-up of GBM patients. BioMed Res Int 2015,2015

Durst C.R.; Raghavan P.; Shaffrey M.E.; Multimodal MR imaging model to predict tumor infiltration in patients with gliomas. Neuroradiology 2014,56(2),107-115

Yoon J.H.; Kim J.H.; Kang W.J.; Grading of cerebral glioma with multi-parametric MR Imaging and 18F-FDG-PET: concordance and accuracy. European Radiol 2014,24(2),380-389

Demerath T.; Simon-Gabriel C.P.; Kellner E.; Mesoscopic imaging of glioblastomas: are diffusion, perfusion and spectroscopic measures influenced by the radiogenetic phenotype? Neuroradiol J 2017,30(1),36-47

Qin L.; Li X.; Stroiney A.; Advanced MRI assessment to predict benefit of anti-programmed cell death 1 protein immunotherapy response in patients with recurrent glioblastoma. Neuroradiology 2017,59(2),135-145

Boult J.K.R.; Borri M.; Jury A.; Investigating intracranial tumour growth patterns with multiparametric MRI incorporating Gd-DTPA and USPIO-enhanced imaging. NMR Biomed 2016,29(11),1608-1617

Server A.; Kulle B.; Gadmar Ø.B.; Josefsen R.; Kumar T.; Nakstad P.H.; Measurements of diagnostic examination performance using quantitative apparent diffusion coefficient and proton MR spectroscopic imaging in the preoperative evaluation of tumor grade in cerebral gliomas. Eur J Radiol 2011,80(2),462-470

Chang P.D.; Chow D.S.; Yang P.H.; Filippi C.G.; Lignelli A.; Predicting glioblastoma recurrence by early changes in the apparent diffusion coefficient value and signal intensity on FLAIR images. AJR Am J Roentgenol 2017,208(1),57-65

Yi C.; Shangjie R.; Volume of high-risk intratumoralsubregions at multi-parametric MR imaging predicts overall survival and complements molecular analysis of glioblastoma. Eur Radiol 2017,27,3583-3592

Khalifa J.; Tensaouti F.; Chaltiel L.; Identification of a candidate biomarker from perfusion MRI to anticipate glioblastoma progression after chemoradiation. Eur Radiol 2016,26(11),4194-4203

Prateek P.; Jay P.; Partovi S.; Madabhushi A.; Tiwari P.; Radiomic features from the peritumoral brain parenchyma on treatment-naïve multi-parametric MR imaging predict long versus short-term survival in glioblastomamultiforme: preliminary findings. Eur Radiol 2017,27(10),4188-4197

Lemasson B.; Chenevert T.L.; Lawrence T.S.; Impact of perfusion map analysis on early survival prediction accuracy in glioma patients. Transl Oncol 2013,6(6),766-774

Inano R.; Oishi N.; Kunieda T.; Visualization of heterogeneity and regional grading of gliomas by multiple features using magnetic resonance-based clustered images. Sci Rep 2016,6,30344

Delgado-Goñi T.; Ortega-Martorell S.; Ciezka M.; MRSI-based molecular imaging of therapy response to temozolomide in preclinical glioblastoma using source analysis. NMR Biomed 2016,29(6),732-743

Cui Y.; Tha K.K.; Terasaka S.; Prognostic imaging biomarkers in glioblastoma: development and independent validation on the basis of multiregion and quantitative analysis of MR images. Radiology 2016,278(2),546-553

Price S.J.; Young A.M.H.; Scotton W.J.; Multimodal MRI can identify perfusion and metabolic changes in the invasive margin of glioblastomas. J Magn Reson Imaging 2016,43(2),487-494

Sauwen N.; Acou M.; Van Cauter S.; Comparison of unsupervised classification methods for brain tumor segmentation using multi-parametric MRI. Neuroimage Clin 2016,12,753-764

Jena A.; Taneja S.; Gambhir A.; Glioma recurrence versus radiation necrosis: single-session multiparametric approach using simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI. Clin Nucl Med 2016,41(5),e228-e236

Kim H.S.; Goh M.J.; Kim N.; Choi C.G.; Kim S.J.; Kim J.H.; Which combination of MR imaging modalities is best for predicting recurrent glioblastoma? Study of diagnostic accuracy and reproducibility. Radiology 2014,273(3),831-843

Christoforidis G.A.; Yang M.; Abduljalil A.; “Tumoral pseudoblush” identified within gliomas at high-spatial-resolution ultrahigh-field-strength gradient-echo MR imaging corresponds to microvascularity at stereotactic biopsy. Radiology 2012,264(1),210-217

Wang S.; Kim S.; Chawla S.; Differentiation between glioblastomas, solitary brain metastases, and primary cerebral lymphomas using diffusion tensor and dynamic susceptibility contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2011,32(3),507-514

Hanahan D.; Weinberg R.A.; Hallmarks of cancer: the next generation. Cell 2011,144(5),646-674

Macdonald D.R.; Cascino T.L.; Schold S.C.; Cairncross J.G.; Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 1990,8(7),1277-1280

Wen P.Y.; Macdonald D.R.; Reardon D.A.; Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol 2010,28(11),1963-1972

Sorensen A.G.; Batchelor T.T.; Wen P.Y.; Zhang W-T.; Jain R.K.; Response criteria for glioma. Nat Clin Pract Oncol 2008,5(11),634-644

Rosenkrantz A.B.; Friedman K.; Chandarana H.; Current status of hybrid PET/MRI in oncologic imaging. AJR Am J Roentgenol 2016,206(1),162-172

Castiglioni I.; Gallivanone F.; Canevari C.; Hybrid PET/MRI for In vivo imaging of cancer: current clinical experiences and recent advances. Curr Med Imaging 2016,12,106

Mainta I.C.; Perani D.; Delattre B.M.A.; FDG PET/MR imaging in major neurocognitive disorders. Curr Alzheimer Res 2017,14,186-197

Marner L.; Henriksen O.M.; Lundemann M.; Larsen V.A.; Law I.; Clinical PET/MRI in neurooncology: opportunities and challenges from a single-institution perspective. Clin Transl Imaging 2017,5(2),135-149

R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria; 2015. Available from: https://www.R-project.org/

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem