- -

Dynamics of hydration water in gelatin and hyaluronic acid hydrogels

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Dynamics of hydration water in gelatin and hyaluronic acid hydrogels

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Kripotou, Sotiria es_ES
dc.contributor.author Zafeiris, Konstantinos es_ES
dc.contributor.author Culebras-Martinez, Maria es_ES
dc.contributor.author Ferrer, GG es_ES
dc.contributor.author Kyritsis, Apostolos es_ES
dc.date.accessioned 2021-03-09T04:32:07Z
dc.date.available 2021-03-09T04:32:07Z
dc.date.issued 2019-08 es_ES
dc.identifier.issn 1292-8941 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163478
dc.description.abstract [EN] We employed broadband dielectric spectroscopy (BDS), for the investigation of the water dynamics in partially hydrated hyaluronic acid (HA), and gelatin (Gel), enzymatically crosslinked hydrogels, in the water fraction ranges [Formula: see text]. Our results indicate that at low hydrations ([Formula: see text]), where the dielectric response of the hydrogels is identical during cooling and heating, water plasticizes strongly the polymeric matrix and is organized in clusters giving rise to [Formula: see text]-process, secondary water relaxation and to an additional slower relaxation process. This later process has been found to be related with the dc charge conductivity and can be described in terms of the conduction current relaxation mechanism. At slightly higher hydrations, however, always below the hydration level where ice is formed during cooling, we have recorded in HA hydrogel a strong water dielectric relaxation process, [Formula: see text], which has Arrhenius-like temperature dependence and large time scale resembling relaxation processes recorded in bulk low density amorphous solid water structures. This relaxation process shows a strong-to-fragile transition at [Formula: see text]C and our data suggest that the VTF-like process recorded at [Formula: see text]C is controlled by the same molecular process like long range charge transport. In addition, our data imply that the crossover temperature is related with the onset of structural rearrangements (increase in configurational entropy) of the macromolecules. In partially crystallized hydrogels ([Formula: see text]) HA exhibits at low temperatures the ice dielectric process consistent with the bulk hexagonal ice, whereas Gel hydrogel exhibits as main low temperature process a slow relaxation process that refers to open tetrahedral structures of water similar to low density amorphous ice structures and to bulk cubic ice. Regarding the water secondary relaxation processes, we have shown that the [Formula: see text]-process and the [Formula: see text] process are activated in water hydrogen bond networks with different structures. es_ES
dc.description.sponsorship The support from Ministerio de Economia, Industria y Competitividad (MINECO) through the MAT2016-76039-C4-1-R project (including the FEDER funds) is acknowledged. The CIBER-BBN initiative is funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund. We thank Dr. P. Klonos for his assistance in preparing scheme 1. es_ES
dc.language Inglés es_ES
dc.publisher Springer-Verlag es_ES
dc.relation.ispartof The European Physical Journal E es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Topical issue es_ES
dc.subject Dielectric Spectroscopy Applied to Soft Matter es_ES
dc.subject.classification MAQUINAS Y MOTORES TERMICOS es_ES
dc.title Dynamics of hydration water in gelatin and hyaluronic acid hydrogels es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1140/epje/i2019-11871-2 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MAT2016-76039-C4-1-R/ES/BIOMATERIALES PIEZOELECTRICOS PARA LA DIFERENCIACION CELULAR EN INTERFASES CELULA-MATERIAL ELECTRICAMENTE ACTIVAS/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada es_ES
dc.description.bibliographicCitation Kripotou, S.; Zafeiris, K.; Culebras-Martinez, M.; Ferrer, G.; Kyritsis, A. (2019). Dynamics of hydration water in gelatin and hyaluronic acid hydrogels. The European Physical Journal E. 42(8):1-18. https://doi.org/10.1140/epje/i2019-11871-2 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1140/epje/i2019-11871-2 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 42 es_ES
dc.description.issue 8 es_ES
dc.identifier.pmid 31444585 es_ES
dc.relation.pasarela S\410757 es_ES
dc.contributor.funder Instituto de Salud Carlos III es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references M. Heyden, J. Chem. Phys. 141, 22D509 (2014) es_ES
dc.description.references D. Laage, T. Elsaesser, J.T. Hynes, Chem. Rev. 117, 10694 (2017) es_ES
dc.description.references R. Biswas, B. Bagchi, J. Phys.: Condens. Matter 30, 013001 (2018) es_ES
dc.description.references A.S. Hoffman, Adv. Drug Deliv. Rev. 43, 3 (2002) es_ES
dc.description.references B.V. Slaughter, S.S. Khurshid, O.Z. Fisher, A. Khademhosseini, N.A. Peppas, Adv. Mater. 21, 3307 (2009) es_ES
dc.description.references S. Khodadadi, A.P. Sokolov, Soft Matter 11, 4984 (2015) es_ES
dc.description.references S. Cerveny, I. Combarro-Palacios, J. Swenson, Phys. Chem. Lett. 7, 4093 (2016) es_ES
dc.description.references F. Mallamace, C. Corsaro, P. Baglioni, E. Fratini, S.-H. Chen, J. Phys.: Condens. Matter 24, 064103 (2012) es_ES
dc.description.references P.W. Fenimore et al., Chem. Phys. 424, 2 (2013) es_ES
dc.description.references W.G. Liu, K.D. Yao, Polymer 42, 3943 (2001) es_ES
dc.description.references E. Mamontov, Y. Yue, J. Bahadur, J. Guo, C.I. Contescu, N.C. Gallego, Y.B. Melnichenko, Carbon 111, 705 (2017) es_ES
dc.description.references J. Swenson, Phys. Chem. Chem. Phys. 20, 30095 (2018) es_ES
dc.description.references J.L. Finney, Philos. Trans. R. Soc. Lond. B 359, 1145 (2004) es_ES
dc.description.references P.G. Debenedetti, J. Phys.: Condens. Matter 15, R1669 (2003) es_ES
dc.description.references M. Kobayashi, H. Tanaka, J. Phys. Chem. B 115, 14077 (2011) es_ES
dc.description.references G. Bullock, V. Molinero, Faraday Discuss. 167, 371 (2013) es_ES
dc.description.references K. Amann-Winkel, R. Böhmer, C. Gainaru, F. Fujara, B. Geil, T. Loerting, Rev. Mod. Phys. 88, 011002 (2016) es_ES
dc.description.references N. Kastelowitz, V. Molinero, ACS Nano 12, 8234 (2018) es_ES
dc.description.references U. Kaatze, J. Mol. Liq. 162, 105 (2011) es_ES
dc.description.references G. Franzese, V. Bianco, S. Iskrov, Food Biophys. 6, 186 (2011) es_ES
dc.description.references M.D. Fayer, Acc. Chem. Res. 45, 3 (2012) es_ES
dc.description.references D. Russo, J. Teixeira, J. Non-Cryst. Solids 407, 459 (2015) es_ES
dc.description.references L. Zhao, K. Ma, Z. Yang, Int. J. Mol. Sci. 16, 8454 (2015) es_ES
dc.description.references I. Brovchenko, A. Oleinikova, Chem. Phys. Chem. 9, 2695 (2008) es_ES
dc.description.references M. Rosenstihl, K. Kämpf, F. Klameth, M. Sattig, M. Vogel, J. Non-Cryst. Solids 407, 449 (2015) es_ES
dc.description.references J. Wolfe, G. Bryant, K.L. Koster, CryoLetters 23, 157 (2002) es_ES
dc.description.references L. Lupi, A. Hudait, V. Molinero, J. Am. Chem. Soc. 136, 3156 (2014) es_ES
dc.description.references P. Gallo et al., Chem. Rev. 116, 7463 (2016) es_ES
dc.description.references O. Mishima, H.E. Stanley, Nature 396, 329 (1998) es_ES
dc.description.references H.E. Stanley et al., J. Non-Cryst. Solids 357, 629 (2011) es_ES
dc.description.references F. Bruni, R. Mancinelli, M.A. Ricci, J. Mol. Liq. 176, 39 (2012) es_ES
dc.description.references F. Caupin, J. Non-Cryst. Solids 407, 441 (2015) es_ES
dc.description.references N. Shinyashiki, M. Shimomura, T. Ushiyama, T. Miyagawa, S. Yagihara, J. Phys. Chem. B 111, 10079 (2007) es_ES
dc.description.references S. Gekle, R.R. Netz, J. Chem. Phys. 137, 104704 (2012) es_ES
dc.description.references P. Ben Ishai, S.R. Tripathi, K. Kawase, A. Puzenko, Y. Feldman, Phys. Chem. Chem. Phys. 17, 15428 (2015) es_ES
dc.description.references U. Kaatze, J. Chem. Phys. 147, 024502 (2017) es_ES
dc.description.references D.R. Martin, J.E. Forsmo, D.V. Matyushov, J. Phys. Chem. B 122, 3418 (2018) es_ES
dc.description.references D.E. Stillman, J.A. MacGregor, R.E. Grimm, J. Geophys. Res. 118, 1 (2013) es_ES
dc.description.references I. Popov, A. Puzenko, A. Khamzin, Y. Feldman, Phys. Chem. Chem. Phys. 17, 1489 (2015) es_ES
dc.description.references K. Sasaki, R. Kita, N. Shinyashiki, S. Yagihara, J. Phys. Chem. B 120, 3950 (2016) es_ES
dc.description.references T. Yasuda, K. Sasaki, R. Kita, N. Shinyashiki, S. Yagihara, J. Phys. Chem. B 121, 2896 (2017) es_ES
dc.description.references P. Pissis, A. Kyritsis, J. Polym. Sci. Part B: Polym. Phys. 51, 159 (2013) es_ES
dc.description.references J. Swenson, S. Cerveny, J. Phys.: Condens. Matter 27, 033102 (2015) es_ES
dc.description.references S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116, 7608 (2016) es_ES
dc.description.references N. Shinyashiki, S. Sudo, S. Yagihara, A. Spanoudaki, A. Kyritsis, P. Pissis, J. Phys. C: Condens. Matter 19, 205113 (2007) es_ES
dc.description.references S. Capaccioli, K.L. Ngai, N. Shinyashiki, J. Phys. Chem. B 111, 8197 (2007) es_ES
dc.description.references S. Cerveny, Á. Alegría, J. Colmenero, Phys. Rev. E 77, 031803 (2008) es_ES
dc.description.references C. Gainaru, A. Fillmer, R. Böhmer, J. Phys. Chem. B 113, 12628 (2009) es_ES
dc.description.references A. Kyritsis, A. Panagopoulou, P. Pissis, R.S.i. Serra, J.L. Gomez Ribelles, N. Shinyashiki, IEEE Trans. Dielectr. Electr. Insul. 19, 1239 (2012) es_ES
dc.description.references A. Panagopoulou, A. Kyritsis, N. Shinyashiki, P. Pissis, J. Phys. Chem. B 116, 4593 (2012) es_ES
dc.description.references A. Panagopoulou, A. Kyritsis, M. Vodina, P. Pissis, Biochim. Biophys. Acta 1834, 977 (2013) es_ES
dc.description.references K.L. Ngai, S. Capaccioli, S. Ancherbak, N. Shinyashiki, Philos. Mag. 91, 1809 (2011) es_ES
dc.description.references K.L. Ngai, S. Capaccioli, A. Paciaroni, Biochim. Biophys. Acta 1861, 3553 (2017) es_ES
dc.description.references S. Cerveny, G.A. Schwartz, R. Bergman, J. Swenson, Phys. Rev. Lett. 93, 245702 (2004) es_ES
dc.description.references J. Swenson, J. Phys.: Condens. Matter 16, S5317 (2004) es_ES
dc.description.references S. Capaccioli, K.L. Ngai, S. Ancherbak, P.A. Rolla, N. Shinyashiki, J. Non-Cryst. Solids 357, 641 (2011) es_ES
dc.description.references S. Capaccioli, K.L. Ngai, J. Chem. Phys. 135, 104504 (2011) es_ES
dc.description.references J.E. Scott, F. Heatley, Biomacromolecules 3, 547 (2002) es_ES
dc.description.references C. Alber, J. Engblom, P. Falkman, V. Kocherbitov, J. Phys. Chem. B 119, 4211 (2015) es_ES
dc.description.references T. Hatakeyama, M. Tanaka, A. Kishi, H. Hatakeyama, Thermochim. Acta 532, 159 (2012) es_ES
dc.description.references A. Pruŝová, F.J. Vergeldt, J. Kucerík, Carbohydr. Polym. 95, 515 (2013) es_ES
dc.description.references S. Kawabe, M. Seki, H. Tabata, J. Appl. Phys. 115, 125 (2014) es_ES
dc.description.references O. Miyawaki, C. Omote, K. Matsuhira, Biopolymers 103, 685 (2015) es_ES
dc.description.references S. Thakur, P.P. Govender, M.A. Mamo, S. Tamulevicius, K. Kumar, V. Thakur, Vacuum 146, 396 (2017) es_ES
dc.description.references A. Panagopoulou, J. Vázquez Molina, A. Kyritsis, M. Monleón Pradas, A. Valles Lluch, G. Gallego Ferrer, P. Pissis, Food Biophys. 8, 192 (2013) es_ES
dc.description.references K. Sasaki, R. Kita, N. Shinyashiki, S. Yagihara, J. Chem. Phys. 140, 124506 (2014) es_ES
dc.description.references K. Sasaki, A. Panagopoulou, R. Kita, N. Shinyashiki, S. Yagihara, A. Kyritsis, P. Pissis, J. Phys. Chem. B 121, 265 (2017) es_ES
dc.description.references S. Poveda-Reyes, V. Moulisova, E. Sanmartín-Masiá, L. Quintanilla-Sierra, M. Salmerón-Sánchez, G. Gallego Ferrer, Macromol. Biosci. 16, 1311 (2016) es_ES
dc.description.references V. Moulisova, S. Poveda-Reyes, E. Sanmartín-Masiá, L. Quintanilla-Sierra, M. Salmerón-Sánchez, G. Gallego Ferrer, ACS Omega 2, 7609 (2017) es_ES
dc.description.references E. Sanmartín-Masiá, S. Poveda-Reyes, G. Gallego Ferrer, Int. J. Polym. Mater. Polym. Biomater. 66, 280 (2017) es_ES
dc.description.references L. Greenspan, J. Res. Natl. Bur. Stand. A Phys. Chem. 81A, 89 (1977) es_ES
dc.description.references F. Kremer, A. Schönhals, Broadband Dielectric Spectroscopy (Springer, Berlin, 2002) es_ES
dc.description.references M. Wübbenhorst, J. van Turnhout, J. Non-Cryst. Solids 305, 40 (2002) es_ES
dc.description.references R. Pelster, A. Kops, G. Nimtz, A. Enders, H. Kietzmann, P. Pissis, A. Kyritsis, D. Woermann, Ber. Bunsenges. Phys. Chem. 97, 666 (1993) es_ES
dc.description.references K. Pathmanathan, G.P. Johari, J. Chem. Soc., Faraday Trans. 90, 1143 (1994) es_ES
dc.description.references Y. Suzuki, M. Steinhart, R. Graf, H.-J. Butt, G. Floudas, J. Phys. Chem. B 119, 14814 (2015) es_ES
dc.description.references G.P. Johari, E. Whalley, J. Chem. Phys. 75, 1333 (1981) es_ES
dc.description.references P.M. Suherman, P. Taylor, G. Smith, J. Non-Cryst. Solids 305, 317 (2002) es_ES
dc.description.references K.-D. Kreuer, Chem. Mater. 8, 610 (1996) es_ES
dc.description.references M.G. Mazza et al., Proc. Natl. Acad. Sci. U.S.A. 108, 19873 (2011) es_ES
dc.description.references E. Brini, C.J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Luksic, K.A. Dill, Chem. Rev. 117, 12385 (2017) es_ES
dc.description.references O. Andersson, J. Phys.: Condens. Matter 20, 244115 (2008) es_ES
dc.description.references C. Gainaru et al., Proc. Natl. Acad. Sci. U.S.A. 111, 17402 (2014) es_ES
dc.description.references G.P. Johari, O. Andersson, Thermochim. Acta 461, 14 (2007) es_ES
dc.description.references E.B. Moore, E. de la Lave, K. Welke, D.A. Scherlis, V. Molinero, Phys. Chem. Chem. Phys. 12, 4124 (2010) es_ES
dc.description.references N. Shinyashiki et al., J. Phys. Chem. B 113, 14448 (2009) es_ES
dc.description.references E.B. Moore, J.T. Allen, V. Molinero, J. Phys. Chem. C 116, 7507 (2012) es_ES
dc.description.references S.R. Gough, D.W. Davidson, J. Chem. Phys. 52, 5442 (1970) es_ES
dc.description.references T. Loerting et al., J. Non-Cryst. Solids 407, 423 (2015) es_ES
dc.description.references K. Yamamoto, H. Namikawa, Jpn. J. Appl. Phys. 27, 1845 (1988) es_ES
dc.description.references K. Yamamoto, H. Namikawa, Jpn. J. Appl. Phys. 28, 2523 (1989) es_ES
dc.description.references P. Pissis, A. Kyritsis, V.V. Shilov, Solid State Ion. 125, 203 (1999) es_ES
dc.description.references J.C. Dyre, T.B. Schrøder, Rev. Mod. Phys. 72, 873 (2000) es_ES
dc.description.references J.C. Dyre, P. Maass, B. Roling, D.L. Sidebottom, Rep. Prog. Phys. 72, 046501 (2009) es_ES
dc.description.references C. Gainaru et al., J. Phys. Chem. B 120, 11074 (2016) es_ES
dc.description.references M. Nakanishi, A.P. Sokolov, J. Non-Cryst. Solids 407, 478 (2015) es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem