- -

UAV Mobility model for dynamic UAV-to-car communications in 3D environments

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

UAV Mobility model for dynamic UAV-to-car communications in 3D environments

Mostrar el registro completo del ítem

Hadiwardoyo, SA.; Dricot, J.; Tavares De Araujo Cesariny Calafate, CM.; Cano, J.; Hernández-Orallo, E.; Manzoni, P. (2020). UAV Mobility model for dynamic UAV-to-car communications in 3D environments. Ad Hoc Networks. 107:1-9. https://doi.org/10.1016/j.adhoc.2020.102193

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163486

Ficheros en el ítem

Metadatos del ítem

Título: UAV Mobility model for dynamic UAV-to-car communications in 3D environments
Autor: Hadiwardoyo, Seilendria A. Dricot, Jean-Michel Tavares De Araujo Cesariny Calafate, Carlos Miguel Cano, Juan-Carlos Hernández-Orallo, Enrique Manzoni, Pietro
Entidad UPV: Universitat Politècnica de València. Departamento de Informática de Sistemas y Computadores - Departament d'Informàtica de Sistemes i Computadors
Fecha difusión:
Resumen:
[EN] In scenarios where there is a lack of reliable infrastructures to support car-to-car communications, Unmanned Aerial Vehicles (UAVs) can be deployed as mobile infrastructures. However, the UAVs should be deployed at ...[+]
Palabras clave: UAV , Simulation , Mobility , Vehicular communications
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Ad Hoc Networks. (issn: 1570-8705 )
DOI: 10.1016/j.adhoc.2020.102193
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.adhoc.2020.102193
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BES-2015-075988/ES/BES-2015-075988/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096384-B-I00/ES/SOLUCIONES PARA UNA GESTION EFICIENTE DEL TRAFICO VEHICULAR BASADAS EN SISTEMAS Y SERVICIOS EN RED/
Agradecimientos:
This work was partially supported by the "Ministerio de Ciencia, Innovacion y Universidades, Programa Estatal de Investigacion, Desarrollo e Innovacion Orientada a los Retos de la Sociedad, Proyectos I+D+I 2018", Spain, ...[+]
Tipo: Artículo

References

Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV Communication Networks. IEEE Communications Surveys & Tutorials, 18(2), 1123-1152. doi:10.1109/comst.2015.2495297

Zhou, Y., Cheng, N., Lu, N., & Shen, X. S. (2015). Multi-UAV-Aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture. IEEE Vehicular Technology Magazine, 10(4), 36-44. doi:10.1109/mvt.2015.2481560

Hadiwardoyo, S. A., Hernández-Orallo, E., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). Experimental characterization of UAV-to-car communications. Computer Networks, 136, 105-118. doi:10.1016/j.comnet.2018.03.002 [+]
Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV Communication Networks. IEEE Communications Surveys & Tutorials, 18(2), 1123-1152. doi:10.1109/comst.2015.2495297

Zhou, Y., Cheng, N., Lu, N., & Shen, X. S. (2015). Multi-UAV-Aided Networks: Aerial-Ground Cooperative Vehicular Networking Architecture. IEEE Vehicular Technology Magazine, 10(4), 36-44. doi:10.1109/mvt.2015.2481560

Hadiwardoyo, S. A., Hernández-Orallo, E., Calafate, C. T., Cano, J. C., & Manzoni, P. (2018). Experimental characterization of UAV-to-car communications. Computer Networks, 136, 105-118. doi:10.1016/j.comnet.2018.03.002

Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent UAV-assisted routing protocol for urban VANETs. Computer Communications, 107, 93-111. doi:10.1016/j.comcom.2017.04.001

Bujari, A., Calafate, C. T., Cano, J.-C., Manzoni, P., Palazzi, C. E., & Ronzani, D. (2017). Flying ad-hoc network application scenarios and mobility models. International Journal of Distributed Sensor Networks, 13(10), 155014771773819. doi:10.1177/1550147717738192

Hadiwardoyo, S. A., Calafate, C. T., Cano, J.-C., Ji, Y., Hernandez-Orallo, E., & Manzoni, P. (2019). 3D Simulation Modeling of UAV-to-Car Communications. IEEE Access, 7, 8808-8823. doi:10.1109/access.2018.2889604

Jia, S., & Zhang, L. (2017). Modelling unmanned aerial vehicles base station in ground‐to‐air cooperative networks. IET Communications, 11(8), 1187-1194. doi:10.1049/iet-com.2016.0808

Hadiwardoyo, S. A., Calafate, C. T., Cano, J.-C., Krinkin, K., Klionskiy, D., Hernández-Orallo, E., & Manzoni, P. (2020). Three Dimensional UAV Positioning for Dynamic UAV-to-Car Communications. Sensors, 20(2), 356. doi:10.3390/s20020356

Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483-502. doi:10.1002/wcm.72

Bettstetter, C., Hartenstein, H., & Pérez-Costa, X. (2004). Stochastic Properties of the Random Waypoint Mobility Model. Wireless Networks, 10(5), 555-567. doi:10.1023/b:wine.0000036458.88990.e5

Wang, W., Guan, X., Wang, B., & Wang, Y. (2010). A novel mobility model based on semi-random circular movement in mobile ad hoc networks. Information Sciences, 180(3), 399-413. doi:10.1016/j.ins.2009.10.001

Xie, J., Wan, Y., Wang, B., Fu, S., Lu, K., & Kim, J. H. (2018). A Comprehensive 3-Dimensional Random Mobility Modeling Framework for Airborne Networks. IEEE Access, 6, 22849-22862. doi:10.1109/access.2018.2819600

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., … Alsdorf, D. (2007). The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2). doi:10.1029/2005rg000183

Bullington, K. (1947). Radio Propagation at Frequencies above 30 Megacycles. Proceedings of the IRE, 35(10), 1122-1136. doi:10.1109/jrproc.1947.232600

Whitteker, J. H. (1990). Fresnel-Kirchhoff theory applied to terrain diffraction problems. Radio Science, 25(5), 837-851. doi:10.1029/rs025i005p00837

Sommer, C., German, R., & Dressler, F. (2011). Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Transactions on Mobile Computing, 10(1), 3-15. doi:10.1109/tmc.2010.133

Haklay, M., & Weber, P. (2008). OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Computing, 7(4), 12-18. doi:10.1109/mprv.2008.80

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem