- -

Characterization and calibration of shape sensors based on multicore optical fibre

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization and calibration of shape sensors based on multicore optical fibre

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Idrisov, Ravil es_ES
dc.contributor.author Floris, Ignazio es_ES
dc.contributor.author Rothhardt, Manfred es_ES
dc.contributor.author Bartelt, Hartmut es_ES
dc.date.accessioned 2021-03-10T04:31:28Z
dc.date.available 2021-03-10T04:31:28Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 1068-5200 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163582
dc.description.abstract [EN] In order to provide high accuracy in shape measurement with multicore optical fibres, characterization and calibration procedures are an important part of sensor preparation. Some procedures can be considered mandatory for adequate shape reconstruction, while others can help to enhance the measurement accuracy. Several of such procedures are discussed and experimentally applied for demonstrating the possible performance enhancement of curvature sensing, a fundamental phase of the shape reconstruction process. The maximum error observed in curvature calculation for a test object has been proved to be almost halved, decreasing from 2.48% to 1.36%, by applying such calibration corrections. The overall average relative accuracy of curvature measurement was improved from 0.89% to 0.5% (an improvement of 44%). es_ES
dc.description.sponsorship This work was performed within the framework of ITN-FINESSE, funded by the European Union¿s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Action grant agreement no 722509. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Optical Fiber Technology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Shape sensor es_ES
dc.subject Curvature sensor es_ES
dc.subject Fiber Bragg grating es_ES
dc.subject Multicore fiber es_ES
dc.subject Sensor calibration es_ES
dc.subject Optical fiber sensor es_ES
dc.title Characterization and calibration of shape sensors based on multicore optical fibre es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.yofte.2020.102319 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/722509/EU/Fibre Nervous Sensing Systems/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Telecomunicación y Aplicaciones Multimedia - Institut Universitari de Telecomunicacions i Aplicacions Multimèdia es_ES
dc.description.bibliographicCitation Idrisov, R.; Floris, I.; Rothhardt, M.; Bartelt, H. (2021). Characterization and calibration of shape sensors based on multicore optical fibre. Optical Fiber Technology. 61:1-8. https://doi.org/10.1016/j.yofte.2020.102319 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.yofte.2020.102319 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 8 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 61 es_ES
dc.relation.pasarela S\427609 es_ES
dc.contributor.funder European Commission es_ES
dc.description.references Gander, M. J., MacPherson, W. N., McBride, R., Jones, J. D. C., Zhang, L., Bennion, I., … Greenaway, A. H. (2000). Bend measurement using Bragg gratings in multicore fibre. Electronics Letters, 36(2), 120. doi:10.1049/el:20000157 es_ES
dc.description.references Szostkiewicz, Ł., Soto, M. A., Yang, Z., Dominguez-Lopez, A., Parola, I., Markiewicz, K., … Thevenaz, L. (2019). High-resolution distributed shape sensing using phase-sensitive optical time-domain reflectometry and multicore fibers. Optics Express, 27(15), 20763. doi:10.1364/oe.27.020763 es_ES
dc.description.references Zhao, Z., Soto, M. A., Tang, M., & Thévenaz, L. (2016). Distributed shape sensing using Brillouin scattering in multi-core fibers. Optics Express, 24(22), 25211. doi:10.1364/oe.24.025211 es_ES
dc.description.references Bronnikov, K., Wolf, A., Yakushin, S., Dostovalov, A., Egorova, O., Zhuravlev, S., … Babin, S. (2019). Durable shape sensor based on FBG array inscribed in polyimide-coated multicore optical fiber. Optics Express, 27(26), 38421. doi:10.1364/oe.380816 es_ES
dc.description.references Zhuang, W., Sun, G., Li, H., Lou, X., Dong, M., & Zhu, L. (2018). FBG based shape sensing of a silicone octopus tentacle model for soft robotics. Optik, 165, 7-15. doi:10.1016/j.ijleo.2018.03.087 es_ES
dc.description.references Error Analysis of FBG-Based Shape Sensors for Medical Needle Tracking. (2014). IEEE/ASME Transactions on Mechatronics, 19(5), 1523-1531. doi:10.1109/tmech.2013.2287764 es_ES
dc.description.references Gribaev, A. I., Pavlishin, I. V., Stam, A. M., Idrisov, R. F., Varzhel, S. V., & Konnov, K. A. (2016). Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer. Optical and Quantum Electronics, 48(12). doi:10.1007/s11082-016-0816-3 es_ES
dc.description.references Moore, J. P., & Rogge, M. D. (2012). Shape sensing using multi-core fiber optic cable and parametric curve solutions. Optics Express, 20(3), 2967. doi:10.1364/oe.20.002967 es_ES
dc.description.references Amanzadeh, M., Aminossadati, S. M., Kizil, M. S., & Rakić, A. D. (2018). Recent developments in fibre optic shape sensing. Measurement, 128, 119-137. doi:10.1016/j.measurement.2018.06.034 es_ES
dc.description.references Floris, I., Calderón, P. A., Sales, S., & Adam, J. M. (2019). Effects of core position uncertainty on optical shape sensor accuracy. Measurement, 139, 21-33. doi:10.1016/j.measurement.2019.03.031 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem