- -

Some variants of Halley's method with memory and their applications for solving several chemical problems

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Some variants of Halley's method with memory and their applications for solving several chemical problems

Show full item record

Cordero Barbero, A.; Ramos, H.; Torregrosa Sánchez, JR. (2020). Some variants of Halley's method with memory and their applications for solving several chemical problems. Journal of Mathematical Chemistry. 58(4):751-774. https://doi.org/10.1007/s10910-020-01108-3

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163766

Files in this item

Item Metadata

Title: Some variants of Halley's method with memory and their applications for solving several chemical problems
Author: Cordero Barbero, Alicia Ramos, Higinio Torregrosa Sánchez, Juan Ramón
UPV Unit: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada
Issued date:
Abstract:
[EN] In this paper, we develop some variants of the well-known Halley's iterative method to solve nonlinear equations. The resulting methods are one-step methods, with and without memory, which use different number of ...[+]
Subjects: Nonlinear equations , One-point iterative root-solver with memory , Halley's method , Convergence order , Efficiency index , Stability analysis
Copyrigths: Cerrado
Source:
Journal of Mathematical Chemistry. (issn: 0259-9791 )
DOI: 10.1007/s10910-020-01108-3
Publisher:
Springer-Verlag
Publisher version: https://doi.org/10.1007/s10910-020-01108-3
Project ID:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F089/ES/Resolución de ecuaciones y sistemas no lineales mediante técnicas iterativas: análisis dinámico y aplicaciones/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095896-B-C22/ES/DISEÑO, ANALISIS Y ESTABILIDAD DE PROCESOS ITERATIVOS APLICADOS A LAS ECUACIONES INTEGRALES Y MATRICIALES Y A LA COMUNICACION AEROESPACIAL/
Thanks:
This research was partially supported by Ministerio de Ciencia, Innovacion y Universidades PGC2018-095896-B-C22 and by Generalitat Valenciana PROMETEO/2016/089.
Type: Artículo

References

J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Banach Spaces (Academic Press, New York, 1970)

M.S. Petkovic̀, B. Neta, L.D. Petkovic̀, J. Džunic̀, Multipoint methods for solving nonlinear equations (Elsevier, Amsterdam, 2013)

S. Amat, S. Busquier, Advances in Iterative Methods for Nonlinear Equations (Springer SIMAI, Switzerland, 2016) [+]
J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Banach Spaces (Academic Press, New York, 1970)

M.S. Petkovic̀, B. Neta, L.D. Petkovic̀, J. Džunic̀, Multipoint methods for solving nonlinear equations (Elsevier, Amsterdam, 2013)

S. Amat, S. Busquier, Advances in Iterative Methods for Nonlinear Equations (Springer SIMAI, Switzerland, 2016)

J.F. Traub, Iterative Methods for the Solution of Equations (Chelsea Publishing Company, New York, 1997)

A. Cordero, J.M. Gutiérrez, Á.A. Magreñán, J.R. Torregrosa, Stability analysis of a parametric family of iterative methods for solving nonlinear models. Appl. Math. Comput. 285, 26–40 (2016)

C. Amorós, I.K. Argyros, R. González, Á.A. Magreñán, L. Orcos, I. Sarría, Study of a high order family: local convergence and dynamics. Mathematics 7(3), 14 (2019)

F.I. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. Sci. World 2013, 11 (2013)

S. Amat, S. Busquier, C. Bermúdez, Á.A. Magreñán, On the election of the damped parameter of a two-step relaxed Newton-type method. Nonlinear Dyn. 84(1), 9–18 (2016)

B. Neta, The basins of attraction of Murakami’s fifth order family of methods. Appl. Numer. Math. 110, 14–25 (2016)

B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, A multidimensional dynamical approach to iterative methods with memory. Appl. Math. Comput. 271, 701–715 (2015)

B. Campos, A. Cordero, J.R. Torregrosa, P. Vindel, Stability of King’s family of iterative methods with memory. Comput. Appl. Math. 318, 504–514 (2017)

A.M. Ostrowski, Solution of Equations and Systems of Equations (Academic Press, New York, 1960)

T.R. Scavo, J.B. Thoo, On the geometry of Halley’s method. Am. Math. Mon. 102, 417–426 (1995)

A. Melman, Geometry and convergence of Euler’s and Halley’s methods. SIAM Rev. 39(4), 728–735 (1997)

S. Amat, S. Busquier, J.M. Gutiérrez, Geometric constructions of iterative functions to solve nonlinear equations. Comput. Appl. Math. 157, 197–205 (2003)

P. Blanchard, Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)

R.C. Robinson, An Introduction to Dynamical Systems, Continous and Discrete (American Mathematical Society, Providence, 2012)

J.P. Jaiswal, A new third-order derivative free method for solving nonlinear equations. Univ. J. Appl. Math. 1(2), 131–135 (2013)

A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, Steffensen type methods for solving nonlinear equations. Comput. Appl. Math. 236, 3058–3064 (2012)

A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)

H. Ramos, J. Vigo-Aguiar, The application of Newton’s method in vector form for solving nonlinear scalar equations where the classical Newton method fails. Comput. Appl. Math. 275, 228–237 (2015)

A. Constantinides, N. Mostoufi, Numerical methods for chemical engineers with MATLAB applications (Prentice-Hall, Englewood Cliffs, 1999)

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record