- -

Accelerating smart eHealth services execution at the fog computing infrastructure

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Accelerating smart eHealth services execution at the fog computing infrastructure

Show full item record

Garcia Valls, M.; Calva-Urrego, C.; García-Fornes, A. (2020). Accelerating smart eHealth services execution at the fog computing infrastructure. Future Generation Computer Systems. 108:882-893. https://doi.org/10.1016/j.future.2018.07.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163814

Files in this item

Item Metadata

Title: Accelerating smart eHealth services execution at the fog computing infrastructure
Author: Garcia Valls, Marisol Calva-Urrego, Christian García-Fornes, A.
UPV Unit: Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions
Universitat Politècnica de València. Departamento de Sistemas Informáticos y Computación - Departament de Sistemes Informàtics i Computació
Issued date:
Abstract:
[EN] Fog computing improves the execution of computationally intensive services for remote client nodes as part of the data processing is performed close to the location where the results will be delivered. As opposed to ...[+]
Subjects: Fog computing , Resource management , Multicore Distribution software , Quality of service , EHealth services , Computation intensive services
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Future Generation Computer Systems. (issn: 0167-739X )
DOI: 10.1016/j.future.2018.07.001
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.future.2018.07.001
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-86520-C3-2-R/ES/SISTEMAS INFORMATICOS PREDECIBLES Y CONFIABLES PARA LA INDUSTRIA 4.0/
info:eu-repo/grantAgreement/MICINN//TIN2011-28339/ES/DESARROLLO DE MIDDLEWARE PARA LA RECONFIGURACION EN TIEMPO REAL DE SISTEMAS DISTRIBUIDOS DE VIDEO VIGILANCIA/
info:eu-repo/grantAgreement/MINECO//TIN2014-56158-C4-3-P/ES/SISTEMAS CIBER-FISICOS DE CRITICIDAD MIXTA SOBRE PLATAFORMAS MULTINUCLEO/
Thanks:
This work has been primarily funded by the M2C2 (TIN201456158-C4-3-P) and PRECON-I4 (TIN2017-86520-C3-2-R), both funded by the Spanish Ministry of Economy and Competitiveness, Spain.
Type: Artículo

References

García-Valls, M., Cucinotta, T., & Lu, C. (2014). Challenges in real-time virtualization and predictable cloud computing. Journal of Systems Architecture, 60(9), 726-740. doi:10.1016/j.sysarc.2014.07.004

García-Valls, M., Dubey, A., & Botti, V. (2018). Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges. Journal of Systems Architecture, 91, 83-102. doi:10.1016/j.sysarc.2018.05.007

Bahtovski, A., & Gusev, M. (2014). Cloudlet Challenges. Procedia Engineering, 69, 704-711. doi:10.1016/j.proeng.2014.03.045 [+]
García-Valls, M., Cucinotta, T., & Lu, C. (2014). Challenges in real-time virtualization and predictable cloud computing. Journal of Systems Architecture, 60(9), 726-740. doi:10.1016/j.sysarc.2014.07.004

García-Valls, M., Dubey, A., & Botti, V. (2018). Introducing the new paradigm of Social Dispersed Computing: Applications, Technologies and Challenges. Journal of Systems Architecture, 91, 83-102. doi:10.1016/j.sysarc.2018.05.007

Bahtovski, A., & Gusev, M. (2014). Cloudlet Challenges. Procedia Engineering, 69, 704-711. doi:10.1016/j.proeng.2014.03.045

Eze, B., Kuziemsky, C., & Peyton, L. (2017). Cloud-based performance management of community care services. Journal of Software: Evolution and Process, 30(7), e1897. doi:10.1002/smr.1897

Qi, J., Yang, P., Min, G., Amft, O., Dong, F., & Xu, L. (2017). Advanced internet of things for personalised healthcare systems: A survey. Pervasive and Mobile Computing, 41, 132-149. doi:10.1016/j.pmcj.2017.06.018

Ahmed, S. H., & Rani, S. (2018). A hybrid approach, Smart Street use case and future aspects for Internet of Things in smart cities. Future Generation Computer Systems, 79, 941-951. doi:10.1016/j.future.2017.08.054

Abdelaziz, A., Elhoseny, M., Salama, A. S., & Riad, A. M. (2018). A machine learning model for improving healthcare services on cloud computing environment. Measurement, 119, 117-128. doi:10.1016/j.measurement.2018.01.022

Mukherjee, M., Matam, R., Shu, L., Maglaras, L., Ferrag, M. A., Choudhury, N., & Kumar, V. (2017). Security and Privacy in Fog Computing: Challenges. IEEE Access, 5, 19293-19304. doi:10.1109/access.2017.2749422

Elhoseny, M., Ramirez-Gonzalez, G., Abu-Elnasr, O. M., Shawkat, S. A., Arunkumar, N., & Farouk, A. (2018). Secure Medical Data Transmission Model for IoT-Based Healthcare Systems. IEEE Access, 6, 20596-20608. doi:10.1109/access.2018.2817615

Jadhav, A., Andrews, D., Fiksdal, A., Kumbamu, A., McCormick, J. B., Misitano, A., … Pathak, J. (2014). Comparative Analysis of Online Health Queries Originating From Personal Computers and Smart Devices on a Consumer Health Information Portal. Journal of Medical Internet Research, 16(7), e160. doi:10.2196/jmir.3186

Golov, N., & Rönnbäck, L. (2017). Big Data normalization for massively parallel processing databases. Computer Standards & Interfaces, 54, 86-93. doi:10.1016/j.csi.2017.01.009

Shehab, A., Elhoseny, M., Muhammad, K., Sangaiah, A. K., Yang, P., Huang, H., & Hou, G. (2018). Secure and Robust Fragile Watermarking Scheme for Medical Images. IEEE Access, 6, 10269-10278. doi:10.1109/access.2018.2799240

Elhoseny, M., Abdelaziz, A., Salama, A. S., Riad, A. M., Muhammad, K., & Sangaiah, A. K. (2018). A hybrid model of Internet of Things and cloud computing to manage big data in health services applications. Future Generation Computer Systems, 86, 1383-1394. doi:10.1016/j.future.2018.03.005

Garcia Valls, M., Lopez, I. R., & Villar, L. F. (2013). iLAND: An Enhanced Middleware for Real-Time Reconfiguration of Service Oriented Distributed Real-Time Systems. IEEE Transactions on Industrial Informatics, 9(1), 228-236. doi:10.1109/tii.2012.2198662

García-Valls, M., Perez-Palacin, D., & Mirandola, R. (2018). Pragmatic cyber physical systems design based on parametric models. Journal of Systems and Software, 144, 559-572. doi:10.1016/j.jss.2018.06.044

The OpenMP® API specification for parallel programming. http://www.openmp.org/ (Accessed June 2017).

Message Passing Interface Forum. http://www.mpi-forum.org/ (Accessed June 2017).

Kuhn, B., Petersen, P., & O’Toole, E. (2000). OpenMP versus threading in C/C++. Concurrency: Practice and Experience, 12(12), 1165-1176. doi:10.1002/1096-9128(200010)12:12<1165::aid-cpe529>3.0.co;2-l

MPI Intel, Benchmarks: Users Guide and Methodology Description, Intel GmbH, Germany.

Object Management Group, A data distribution service for real-time systems version 1.4, 2015. http://www.omg.org/spec/DDS/1.4.

Palanca, J., Navarro, M., García-Fornes, A., & Julian, V. (2013). Deadline prediction scheduling based on benefits. Future Generation Computer Systems, 29(1), 61-73. doi:10.1016/j.future.2012.05.007

Palanca, J., Navarro, M., Julian, V., & García-Fornes, A. (2012). Distributed goal-oriented computing. Journal of Systems and Software, 85(7), 1540-1557. doi:10.1016/j.jss.2012.01.045

Burdalo, L., Terrasa, A., Espinosa, A., & Garcia-Fornes, A. (2012). Analyzing the Effect of Gain Time on Soft-Task Scheduling Policies in Real-Time Systems. IEEE Transactions on Software Engineering, 38(6), 1305-1318. doi:10.1109/tse.2011.95

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record