Mostrar el registro sencillo del ítem
dc.contributor.author | Pérez-Álvarez, E.P. | es_ES |
dc.contributor.author | Intrigliolo Molina, D.S. | es_ES |
dc.contributor.author | Vivaldi, G.A. | es_ES |
dc.contributor.author | García Esparza, Mª José | es_ES |
dc.contributor.author | Lizama Abad, Victoria | es_ES |
dc.contributor.author | Alvarez Cano, María Inmaculada | es_ES |
dc.date.accessioned | 2021-03-13T04:31:00Z | |
dc.date.available | 2021-03-13T04:31:00Z | |
dc.date.issued | 2021-04-01 | es_ES |
dc.identifier.issn | 0378-3774 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163817 | |
dc.description.abstract | [EN] Climate change scenarios are predicting an increase in temperature as well as more scarce and torrential rainfall episodes. Due to this, an imbalance between grape technological and phenolic maturity is being observed detrimentally affecting grapes composition. In semi-arid areas, irrigation management is a main field practice to influence grape ripening. The goal of the present study was to investigate in Vitis vinifera L. cv. Bobal grapevine responses to three watering regimes: i) Rainfed, ii) deficit irrigation (DI) replacing only 35% of the estimated crop evapotranspiration (ETc) and ii) full irrigation (FI) replacing 100% ETc. In the mid-summer, rainfed grapevines showed different degrees of water stress determined by midday stem water potentials (¿stem) ranging from -1.1 to -1.4 MPa depening on the season. Rainfed plants had in all seasons less vigor and production and, at harvest, higher concentrations of total soluble solids (TSS) and grape phenolics compounds, as well as lower pH, with respect to the other water regimes studied. DI grapevines, generally, had intermediate values between Rainfed and FI, which presented extreme values of the studied parameters respect to Rainfed. The effects observed on grape color parameters and phenolic compounds with the Rainfed regime were mainly due to a dehydration of the berry, which lowered the yield and the weight of the berry compared to the irrigated treatments. The lower TSS accumulation in the DI berries with respect to the Rainfed, will favour obtaining wines with lower alcohol content, currently more demanded by the consumers. Besides, despite the differences obtained between water regime treatments in the TSS accumulation, the extractability of the anthocyanins was similar, which is interesting since anthocyanin extraction from grapes is prerequisite to the formation of stable red wine pigments. Although the most convenient irrigation strategy might depend to the wine style to be obtained, DI is a strategy that can help to close the gap in the imbalance between the technological and phenolic maturity, positively affecting vine yield and performance with respect to the rainfed strategy. | es_ES |
dc.description.sponsorship | E.P. Pérez-Álvarez thanks the Spanish Government for her postdoctoral contract. This work was supported by the Spanish Ministry of Economy and Competitiveness with FEDER co-financing [grant numbers AGL-2014-54201-C4-4-R and AGL2017-83738-C3-3-R], CajaMar and Fundación Lucio Gil de Fagoaga. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Agricultural Water Management | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Bobal | es_ES |
dc.subject | Regulated deficit irrigation | es_ES |
dc.subject | Water stress | es_ES |
dc.subject | Yield | es_ES |
dc.subject | Grape | es_ES |
dc.subject | Polyphenols | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.agwat.2021.106772 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2014-54201-C4-4-R/ES/ESTRATEGIAS PARA MITIGAR LOS EFECTOS DEL ESTRES HIDRICO SEVERO EN LA VITICULTURA DE CLIMA CALIDO Y ARIDO DEL SURESTE DE ESPAÑA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-83738-C3-3-R/ES/OPTIMIZACION DE LA EFICIENCIA EN EL USO DEL NITROGENO EN LA VID BAJO DEFICIT HIDRICO Y ESTRES SALINO/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Pérez-Álvarez, E.; Intrigliolo Molina, D.; Vivaldi, G.; García Esparza, MJ.; Lizama Abad, V.; Alvarez Cano, MI. (2021). Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. Agricultural Water Management. 248:1-13. https://doi.org/10.1016/j.agwat.2021.106772 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.agwat.2021.106772 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 13 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 248 | es_ES |
dc.relation.pasarela | S\428558 | es_ES |
dc.contributor.funder | Fundación Cajamar | es_ES |
dc.contributor.funder | Fundación Lucio Gil de Fagoaga | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Acevedo-Opazo, C., Ortega-Farias, S., & Fuentes, S. (2010). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97(7), 956-964. doi:10.1016/j.agwat.2010.01.025 | es_ES |
dc.description.references | Baeza, P., Sánchez-de-Miguel, P., Centeno, A., Junquera, P., Linares, R., & Lissarrague, J. R. (2007). Water relations between leaf water potential, photosynthesis and agronomic vine response as a tool for establishing thresholds in irrigation scheduling. Scientia Horticulturae, 114(3), 151-158. doi:10.1016/j.scienta.2007.06.012 | es_ES |
dc.description.references | Bucchetti, B., Matthews, M. A., Falginella, L., Peterlunger, E., & Castellarin, S. D. (2011). Effect of water deficit on Merlot grape tannins and anthocyanins across four seasons. Scientia Horticulturae, 128(3), 297-305. doi:10.1016/j.scienta.2011.02.003 | es_ES |
dc.description.references | Candolfi-Vasconcelos, M. C., Candolfi, M., & Kohlet, W. (1994). Retranslocation of carbon reserves from the woody storage tissues into the fruit as a response to defoliation stress during the ripening period in Vitis vinifera L. Planta, 192(4). doi:10.1007/bf00203595 | es_ES |
dc.description.references | Castellarin, S. D., Matthews, M. A., Di Gaspero, G., & Gambetta, G. A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227(1), 101-112. doi:10.1007/s00425-007-0598-8 | es_ES |
dc.description.references | CHALMERS, Y. M., DOWNEY, M. O., KRSTIC, M. P., LOVEYS, B. R., & DRY, P. R. (2010). Influence of sustained deficit irrigation on colour parameters of Cabernet Sauvignon and Shiraz microscale wine fermentations. Australian Journal of Grape and Wine Research, 16(2), 301-313. doi:10.1111/j.1755-0238.2010.00093.x | es_ES |
dc.description.references | Chaves, M. M., Santos, T. P., Souza, C. R., Ortuño, M. F., Rodrigues, M. L., Lopes, C. M., … Pereira, J. S. (2007). Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology, 150(2), 237-252. doi:10.1111/j.1744-7348.2006.00123.x | es_ES |
dc.description.references | Choné, X. (2001). Stem Water Potential is a Sensitive Indicator of Grapevine Water Status. Annals of Botany, 87(4), 477-483. doi:10.1006/anbo.2000.1361 | es_ES |
dc.description.references | Cole, J., & Pagay, V. (2015). Usefulness of early morning stem water potential as a sensitive indicator of water status of deficit-irrigated grapevines (Vitis vinifera L.). Scientia Horticulturae, 191, 10-14. doi:10.1016/j.scienta.2015.04.034 | es_ES |
dc.description.references | Conesa, M. R., Falagán, N., de la Rosa, J. M., Aguayo, E., Domingo, R., & Pastor, A. P. (2016). Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in ‘Crimson Seedless’ table grapes. Agricultural Water Management, 163, 9-18. doi:10.1016/j.agwat.2015.08.026 | es_ES |
dc.description.references | DeGaris, K. A., Walker, R. R., Loveys, B. R., & Tyerman, S. D. (2015). Impact of deficit irrigation strategies in a saline environment on Shiraz yield, physiology, water use and tissue ion concentration. Australian Journal of Grape and Wine Research, 21(3), 468-478. doi:10.1111/ajgw.12151 | es_ES |
dc.description.references | Dokoozlian, N. K., & Kliewer, W. M. (1996). Influence of Light on Grape Berry Growth and Composition Varies during Fruit Development. Journal of the American Society for Horticultural Science, 121(5), 869-874. doi:10.21273/jashs.121.5.869 | es_ES |
dc.description.references | Dos Santos, T. P., Lopes, C. M., Lucília Rodrigues, M., de Souza, C. R., Ricardo-da-Silva, J. M., Maroco, J. P., … Manuela Chaves, M. (2007). Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Scientia Horticulturae, 112(3), 321-330. doi:10.1016/j.scienta.2007.01.006 | es_ES |
dc.description.references | Dugelay, I., Gunata, Z., Sapis, J. C., Baumes, R., & Bayonove, C. (1993). Role of cinnamoyl esterase activities from enzyme preparations on the formation of volatile phenols during winemaking. Journal of Agricultural and Food Chemistry, 41(11), 2092-2096. doi:10.1021/jf00035a051 | es_ES |
dc.description.references | Ferrandino, A., & Lovisolo, C. (2014). Abiotic stress effects on grapevine (Vitis vinifera L.): Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environmental and Experimental Botany, 103, 138-147. doi:10.1016/j.envexpbot.2013.10.012 | es_ES |
dc.description.references | FLEXAS, J., GALMÃ S, J., GALLÃ , A., GULÃ AS, J., POU, A., RIBAS-CARBO, M., … MEDRANO, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16, 106-121. doi:10.1111/j.1755-0238.2009.00057.x | es_ES |
dc.description.references | Fraga, H., García de Cortázar Atauri, I., Malheiro, A. C., & Santos, J. A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 22(11), 3774-3788. doi:10.1111/gcb.13382 | es_ES |
dc.description.references | Fraga, H., García de Cortázar Atauri, I., & Santos, J. . (2018). Viticultural irrigation demands under climate change scenarios in Portugal. Agricultural Water Management, 196, 66-74. doi:10.1016/j.agwat.2017.10.023 | es_ES |
dc.description.references | GARCÍA-CARPINTERO, E. G., GÓMEZ GALLEGO, M. A., SÁNCHEZ-PALOMO, E., & GONZÁLEZ VIÑAS, M. A. (2011). Sensory descriptive analysis of Bobal red wines treated with oak chips at different stages of winemaking. Australian Journal of Grape and Wine Research, 17(3), 368-377. doi:10.1111/j.1755-0238.2011.00161.x | es_ES |
dc.description.references | García-Escudero, E., Romero, I., Lorenzo, I., García, C., Villar, M.T., López, D., Ibáñez, S., Martín, I., 2006. Interpretación del análisis foliar en Tempranillo en la DOCa Rioja. Cuad. De. Campo 34, pp. 35–39. | es_ES |
dc.description.references | Girona, J., Mata, M., del Campo, J., Arbonés, A., Bartra, E., & Marsal, J. (2005). The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrigation Science, 24(2), 115-127. doi:10.1007/s00271-005-0015-7 | es_ES |
dc.description.references | GIRONA, J., MARSAL, J., MATA, M., DEL CAMPO, J., & BASILE, B. (2009). Phenological sensitivity of berry growth and composition of Tempranillo grapevines (Vitis viniferaL.) to water stress. Australian Journal of Grape and Wine Research, 15(3), 268-277. doi:10.1111/j.1755-0238.2009.00059.x | es_ES |
dc.description.references | Glories, Y. Augustin, M., 1993. Maturité phénolique du raisin, consequences technologiques: applicationaux millésimes 1991 et 1992. Compte Rendu Colloque Journée Technique Bordeaux CIVB, pp. 56–61. | es_ES |
dc.description.references | Intrigliolo, D. S., & Castel, J. R. (2009). Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrigation Science, 28(2), 113-125. doi:10.1007/s00271-009-0164-1 | es_ES |
dc.description.references | Intrigliolo, D. S., Pérez, D., Risco, D., Yeves, A., & Castel, J. R. (2012). Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Science, 30(5), 339-349. doi:10.1007/s00271-012-0354-0 | es_ES |
dc.description.references | Intrigliolo, D. S., Lizama, V., García-Esparza, M. J., Abrisqueta, I., & Álvarez, I. (2016). Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition. Agricultural Water Management, 170, 110-119. doi:10.1016/j.agwat.2015.10.020 | es_ES |
dc.description.references | IPCC, 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. | es_ES |
dc.description.references | Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y., & van Leeuwen, C. (2006). Influence of Vineyard Location and Vine Water Status on Fruit Maturation of Nonirrigated Cv. Agiorgitiko (Vitis vinifera L.). Effects on Wine Phenolic and Aroma Components. Journal of Agricultural and Food Chemistry, 54(14), 5077-5086. doi:10.1021/jf0605446 | es_ES |
dc.description.references | Lanari, V., Palliotti, A., Sabbatini, P., Howell, G. S., & Silvestroni, O. (2014). Optimizing deficit irrigation strategies to manage vine performance and fruit composition of field-grown ‘Sangiovese’ (Vitis vinifera L.) grapevines. Scientia Horticulturae, 179, 239-247. doi:10.1016/j.scienta.2014.09.032 | es_ES |
dc.description.references | MCCARTHY, M. G. (1997). The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 3(3), 2-8. doi:10.1111/j.1755-0238.1997.tb00128.x | es_ES |
dc.description.references | Medrano, H., Tomás, M., Martorell, S., Escalona, J.-M., Pou, A., Fuentes, S., … Bota, J. (2014). Improving water use efficiency of vineyards in semi-arid regions. A review. Agronomy for Sustainable Development, 35(2), 499-517. doi:10.1007/s13593-014-0280-z | es_ES |
dc.description.references | Méndez, J.V., 2005. Estudio De La Maduración Fenológica Y Antocianica En Uvas Tintas De Bobal Para Diferentes Condiciones Agrológicas. Doctoral Thesis, p. 362. | es_ES |
dc.description.references | Myers, B. J. (1988). Water stress integral--a link between short-term stress and long-term growth. Tree Physiology, 4(4), 315-323. doi:10.1093/treephys/4.4.315 | es_ES |
dc.description.references | Niculcea, M., López, J., Sánchez-Díaz, M., & Carmen Antolín, M. (2014). Involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) cultivars. Australian Journal of Grape and Wine Research, 20(2), 281-291. doi:10.1111/ajgw.12064 | es_ES |
dc.description.references | PETRIE, P. R., COOLEY, N. M., & CLINGELEFFER, P. R. (2008). The effect of post-veraison water deficit on yield components and maturation of irrigated Shiraz (Vitis vinifera L.) in the current and following season. Australian Journal of Grape and Wine Research, 10(3), 203-215. doi:10.1111/j.1755-0238.2004.tb00024.x | es_ES |
dc.description.references | Poni, S., Gatti, M., Palliotti, A., Dai, Z., Duchêne, E., Truong, T.-T., … Tombesi, S. (2018). Grapevine quality: A multiple choice issue. Scientia Horticulturae, 234, 445-462. doi:10.1016/j.scienta.2017.12.035 | es_ES |
dc.description.references | ROBY, G., HARBERTSON, J. F., ADAMS, D. A., & MATTHEWS, M. A. (2004). Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10(2), 100-107. doi:10.1111/j.1755-0238.2004.tb00012.x | es_ES |
dc.description.references | García Romero, E., Sánchez Muñoz, G., Martín Alvarez, P. J., & Cabezudo Ibáñez, M. D. (1993). Determination of organic acids in grape musts, wines and vinegars by high-performance liquid chromatography. Journal of Chromatography A, 655(1), 111-117. doi:10.1016/0021-9673(93)87018-h | es_ES |
dc.description.references | Romero, P., Gil-Muñoz, R., del Amor, F. M., Valdés, E., Fernández, J. I., & Martinez-Cutillas, A. (2013). Regulated Deficit Irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agricultural Water Management, 121, 85-101. doi:10.1016/j.agwat.2013.01.007 | es_ES |
dc.description.references | Simonneau, T., Lebon, E., Coupel-Ledru, A., Marguerit, E., Rossdeutsch, L., & Ollat, N. (2017). Adapting plant material to face water stress in vineyards: which physiological targets for an optimal control of plant water status? OENO One, 51(2), 167-179. doi:10.20870/oeno-one.2017.51.2.1870 | es_ES |
dc.description.references | Tonietto, J., & Carbonneau, A. (2004). A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology, 124(1-2), 81-97. doi:10.1016/j.agrformet.2003.06.001 | es_ES |
dc.description.references | Unterkofler, J., Muhlack, R. A., & Jeffery, D. W. (2020). Processes and purposes of extraction of grape components during winemaking: current state and perspectives. Applied Microbiology and Biotechnology, 104(11), 4737-4755. doi:10.1007/s00253-020-10558-3 | es_ES |
dc.description.references | Van Leeuwen, C., & Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11(1), 150-167. doi:10.1017/jwe.2015.21 | es_ES |
dc.description.references | WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., KERRIDGE, G. H., RÜHL, E. H., & NICHOLAS, P. R. (2005). Shiraz berry size in relation to seed number and implications for juice and wine composition. Australian Journal of Grape and Wine Research, 11(1), 2-8. doi:10.1111/j.1755-0238.2005.tb00273.x | es_ES |
dc.description.references | Williams, L. E. (2012). Interaction of applied water amounts and leaf removal in the fruiting zone on grapevine water relations and productivity of Merlot. Irrigation Science, 30(5), 363-375. doi:10.1007/s00271-012-0355-z | es_ES |
dc.description.references | Williams, L. E., & Ayars, J. E. (2005). Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agricultural and Forest Meteorology, 132(3-4), 201-211. doi:10.1016/j.agrformet.2005.07.010 | es_ES |
dc.description.references | Williams, L. E., Grimes, D. W., & Phene, C. J. (2009). The effects of applied water at various fractions of measured evapotranspiration on reproductive growth and water productivity of Thompson Seedless grapevines. Irrigation Science, 28(3), 233-243. doi:10.1007/s00271-009-0173-0 | es_ES |
dc.description.references | Yu, R., Brillante, L., Martínez-Lüscher, J., & Kurtural, S. K. (2020). Spatial Variability of Soil and Plant Water Status and Their Cascading Effects on Grapevine Physiology Are Linked to Berry and Wine Chemistry. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00790 | es_ES |