- -

Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition.

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition.

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Álvarez, E.P. es_ES
dc.contributor.author Intrigliolo Molina, D.S. es_ES
dc.contributor.author Vivaldi, G.A. es_ES
dc.contributor.author García Esparza, Mª José es_ES
dc.contributor.author Lizama Abad, Victoria es_ES
dc.contributor.author Alvarez Cano, María Inmaculada es_ES
dc.date.accessioned 2021-03-13T04:31:00Z
dc.date.available 2021-03-13T04:31:00Z
dc.date.issued 2021-04-01 es_ES
dc.identifier.issn 0378-3774 es_ES
dc.identifier.uri http://hdl.handle.net/10251/163817
dc.description.abstract [EN] Climate change scenarios are predicting an increase in temperature as well as more scarce and torrential rainfall episodes. Due to this, an imbalance between grape technological and phenolic maturity is being observed detrimentally affecting grapes composition. In semi-arid areas, irrigation management is a main field practice to influence grape ripening. The goal of the present study was to investigate in Vitis vinifera L. cv. Bobal grapevine responses to three watering regimes: i) Rainfed, ii) deficit irrigation (DI) replacing only 35% of the estimated crop evapotranspiration (ETc) and ii) full irrigation (FI) replacing 100% ETc. In the mid-summer, rainfed grapevines showed different degrees of water stress determined by midday stem water potentials (¿stem) ranging from -1.1 to -1.4 MPa depening on the season. Rainfed plants had in all seasons less vigor and production and, at harvest, higher concentrations of total soluble solids (TSS) and grape phenolics compounds, as well as lower pH, with respect to the other water regimes studied. DI grapevines, generally, had intermediate values between Rainfed and FI, which presented extreme values of the studied parameters respect to Rainfed. The effects observed on grape color parameters and phenolic compounds with the Rainfed regime were mainly due to a dehydration of the berry, which lowered the yield and the weight of the berry compared to the irrigated treatments. The lower TSS accumulation in the DI berries with respect to the Rainfed, will favour obtaining wines with lower alcohol content, currently more demanded by the consumers. Besides, despite the differences obtained between water regime treatments in the TSS accumulation, the extractability of the anthocyanins was similar, which is interesting since anthocyanin extraction from grapes is prerequisite to the formation of stable red wine pigments. Although the most convenient irrigation strategy might depend to the wine style to be obtained, DI is a strategy that can help to close the gap in the imbalance between the technological and phenolic maturity, positively affecting vine yield and performance with respect to the rainfed strategy. es_ES
dc.description.sponsorship E.P. Pérez-Álvarez thanks the Spanish Government for her postdoctoral contract. This work was supported by the Spanish Ministry of Economy and Competitiveness with FEDER co-financing [grant numbers AGL-2014-54201-C4-4-R and AGL2017-83738-C3-3-R], CajaMar and Fundación Lucio Gil de Fagoaga. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Agricultural Water Management es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Bobal es_ES
dc.subject Regulated deficit irrigation es_ES
dc.subject Water stress es_ES
dc.subject Yield es_ES
dc.subject Grape es_ES
dc.subject Polyphenols es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.agwat.2021.106772 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-54201-C4-4-R/ES/ESTRATEGIAS PARA MITIGAR LOS EFECTOS DEL ESTRES HIDRICO SEVERO EN LA VITICULTURA DE CLIMA CALIDO Y ARIDO DEL SURESTE DE ESPAÑA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-83738-C3-3-R/ES/OPTIMIZACION DE LA EFICIENCIA EN EL USO DEL NITROGENO EN LA VID BAJO DEFICIT HIDRICO Y ESTRES SALINO/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Pérez-Álvarez, E.; Intrigliolo Molina, D.; Vivaldi, G.; García Esparza, MJ.; Lizama Abad, V.; Alvarez Cano, MI. (2021). Effects of the irrigation regimes on grapevine cv. Bobal in a Mediterranean climate: I. Water relations, vine performance and grape composition. Agricultural Water Management. 248:1-13. https://doi.org/10.1016/j.agwat.2021.106772 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.agwat.2021.106772 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 248 es_ES
dc.relation.pasarela S\428558 es_ES
dc.contributor.funder Fundación Cajamar es_ES
dc.contributor.funder Fundación Lucio Gil de Fagoaga es_ES
dc.contributor.funder European Regional Development Fund es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Acevedo-Opazo, C., Ortega-Farias, S., & Fuentes, S. (2010). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97(7), 956-964. doi:10.1016/j.agwat.2010.01.025 es_ES
dc.description.references Baeza, P., Sánchez-de-Miguel, P., Centeno, A., Junquera, P., Linares, R., & Lissarrague, J. R. (2007). Water relations between leaf water potential, photosynthesis and agronomic vine response as a tool for establishing thresholds in irrigation scheduling. Scientia Horticulturae, 114(3), 151-158. doi:10.1016/j.scienta.2007.06.012 es_ES
dc.description.references Bucchetti, B., Matthews, M. A., Falginella, L., Peterlunger, E., & Castellarin, S. D. (2011). Effect of water deficit on Merlot grape tannins and anthocyanins across four seasons. Scientia Horticulturae, 128(3), 297-305. doi:10.1016/j.scienta.2011.02.003 es_ES
dc.description.references Candolfi-Vasconcelos, M. C., Candolfi, M., & Kohlet, W. (1994). Retranslocation of carbon reserves from the woody storage tissues into the fruit as a response to defoliation stress during the ripening period in Vitis vinifera L. Planta, 192(4). doi:10.1007/bf00203595 es_ES
dc.description.references Castellarin, S. D., Matthews, M. A., Di Gaspero, G., & Gambetta, G. A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227(1), 101-112. doi:10.1007/s00425-007-0598-8 es_ES
dc.description.references CHALMERS, Y. M., DOWNEY, M. O., KRSTIC, M. P., LOVEYS, B. R., & DRY, P. R. (2010). Influence of sustained deficit irrigation on colour parameters of Cabernet Sauvignon and Shiraz microscale wine fermentations. Australian Journal of Grape and Wine Research, 16(2), 301-313. doi:10.1111/j.1755-0238.2010.00093.x es_ES
dc.description.references Chaves, M. M., Santos, T. P., Souza, C. R., Ortuño, M. F., Rodrigues, M. L., Lopes, C. M., … Pereira, J. S. (2007). Deficit irrigation in grapevine improves water-use efficiency while controlling vigour and production quality. Annals of Applied Biology, 150(2), 237-252. doi:10.1111/j.1744-7348.2006.00123.x es_ES
dc.description.references Choné, X. (2001). Stem Water Potential is a Sensitive Indicator of Grapevine Water Status. Annals of Botany, 87(4), 477-483. doi:10.1006/anbo.2000.1361 es_ES
dc.description.references Cole, J., & Pagay, V. (2015). Usefulness of early morning stem water potential as a sensitive indicator of water status of deficit-irrigated grapevines (Vitis vinifera L.). Scientia Horticulturae, 191, 10-14. doi:10.1016/j.scienta.2015.04.034 es_ES
dc.description.references Conesa, M. R., Falagán, N., de la Rosa, J. M., Aguayo, E., Domingo, R., & Pastor, A. P. (2016). Post-veraison deficit irrigation regimes enhance berry coloration and health-promoting bioactive compounds in ‘Crimson Seedless’ table grapes. Agricultural Water Management, 163, 9-18. doi:10.1016/j.agwat.2015.08.026 es_ES
dc.description.references DeGaris, K. A., Walker, R. R., Loveys, B. R., & Tyerman, S. D. (2015). Impact of deficit irrigation strategies in a saline environment on Shiraz yield, physiology, water use and tissue ion concentration. Australian Journal of Grape and Wine Research, 21(3), 468-478. doi:10.1111/ajgw.12151 es_ES
dc.description.references Dokoozlian, N. K., & Kliewer, W. M. (1996). Influence of Light on Grape Berry Growth and Composition Varies during Fruit Development. Journal of the American Society for Horticultural Science, 121(5), 869-874. doi:10.21273/jashs.121.5.869 es_ES
dc.description.references Dos Santos, T. P., Lopes, C. M., Lucília Rodrigues, M., de Souza, C. R., Ricardo-da-Silva, J. M., Maroco, J. P., … Manuela Chaves, M. (2007). Effects of deficit irrigation strategies on cluster microclimate for improving fruit composition of Moscatel field-grown grapevines. Scientia Horticulturae, 112(3), 321-330. doi:10.1016/j.scienta.2007.01.006 es_ES
dc.description.references Dugelay, I., Gunata, Z., Sapis, J. C., Baumes, R., & Bayonove, C. (1993). Role of cinnamoyl esterase activities from enzyme preparations on the formation of volatile phenols during winemaking. Journal of Agricultural and Food Chemistry, 41(11), 2092-2096. doi:10.1021/jf00035a051 es_ES
dc.description.references Ferrandino, A., & Lovisolo, C. (2014). Abiotic stress effects on grapevine (Vitis vinifera L.): Focus on abscisic acid-mediated consequences on secondary metabolism and berry quality. Environmental and Experimental Botany, 103, 138-147. doi:10.1016/j.envexpbot.2013.10.012 es_ES
dc.description.references FLEXAS, J., GALMÃ S, J., GALLÃ , A., GULÃ AS, J., POU, A., RIBAS-CARBO, M., … MEDRANO, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16, 106-121. doi:10.1111/j.1755-0238.2009.00057.x es_ES
dc.description.references Fraga, H., García de Cortázar Atauri, I., Malheiro, A. C., & Santos, J. A. (2016). Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Global Change Biology, 22(11), 3774-3788. doi:10.1111/gcb.13382 es_ES
dc.description.references Fraga, H., García de Cortázar Atauri, I., & Santos, J. . (2018). Viticultural irrigation demands under climate change scenarios in Portugal. Agricultural Water Management, 196, 66-74. doi:10.1016/j.agwat.2017.10.023 es_ES
dc.description.references GARCÍA-CARPINTERO, E. G., GÓMEZ GALLEGO, M. A., SÁNCHEZ-PALOMO, E., & GONZÁLEZ VIÑAS, M. A. (2011). Sensory descriptive analysis of Bobal red wines treated with oak chips at different stages of winemaking. Australian Journal of Grape and Wine Research, 17(3), 368-377. doi:10.1111/j.1755-0238.2011.00161.x es_ES
dc.description.references García-Escudero, E., Romero, I., Lorenzo, I., García, C., Villar, M.T., López, D., Ibáñez, S., Martín, I., 2006. Interpretación del análisis foliar en Tempranillo en la DOCa Rioja. Cuad. De. Campo 34, pp. 35–39. es_ES
dc.description.references Girona, J., Mata, M., del Campo, J., Arbonés, A., Bartra, E., & Marsal, J. (2005). The use of midday leaf water potential for scheduling deficit irrigation in vineyards. Irrigation Science, 24(2), 115-127. doi:10.1007/s00271-005-0015-7 es_ES
dc.description.references GIRONA, J., MARSAL, J., MATA, M., DEL CAMPO, J., & BASILE, B. (2009). Phenological sensitivity of berry growth and composition of Tempranillo grapevines (Vitis viniferaL.) to water stress. Australian Journal of Grape and Wine Research, 15(3), 268-277. doi:10.1111/j.1755-0238.2009.00059.x es_ES
dc.description.references Glories, Y. Augustin, M., 1993. Maturité phénolique du raisin, consequences technologiques: applicationaux millésimes 1991 et 1992. Compte Rendu Colloque Journée Technique Bordeaux CIVB, pp. 56–61. es_ES
dc.description.references Intrigliolo, D. S., & Castel, J. R. (2009). Response of grapevine cv. ‘Tempranillo’ to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrigation Science, 28(2), 113-125. doi:10.1007/s00271-009-0164-1 es_ES
dc.description.references Intrigliolo, D. S., Pérez, D., Risco, D., Yeves, A., & Castel, J. R. (2012). Yield components and grape composition responses to seasonal water deficits in Tempranillo grapevines. Irrigation Science, 30(5), 339-349. doi:10.1007/s00271-012-0354-0 es_ES
dc.description.references Intrigliolo, D. S., Lizama, V., García-Esparza, M. J., Abrisqueta, I., & Álvarez, I. (2016). Effects of post-veraison irrigation regime on Cabernet Sauvignon grapevines in Valencia, Spain: Yield and grape composition. Agricultural Water Management, 170, 110-119. doi:10.1016/j.agwat.2015.10.020 es_ES
dc.description.references IPCC, 2018. Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds.)]. es_ES
dc.description.references Koundouras, S., Marinos, V., Gkoulioti, A., Kotseridis, Y., & van Leeuwen, C. (2006). Influence of Vineyard Location and Vine Water Status on Fruit Maturation of Nonirrigated Cv. Agiorgitiko (Vitis vinifera L.). Effects on Wine Phenolic and Aroma Components. Journal of Agricultural and Food Chemistry, 54(14), 5077-5086. doi:10.1021/jf0605446 es_ES
dc.description.references Lanari, V., Palliotti, A., Sabbatini, P., Howell, G. S., & Silvestroni, O. (2014). Optimizing deficit irrigation strategies to manage vine performance and fruit composition of field-grown ‘Sangiovese’ (Vitis vinifera L.) grapevines. Scientia Horticulturae, 179, 239-247. doi:10.1016/j.scienta.2014.09.032 es_ES
dc.description.references MCCARTHY, M. G. (1997). The effect of transient water deficit on berry development of cv. Shiraz (Vitis vinifera L.). Australian Journal of Grape and Wine Research, 3(3), 2-8. doi:10.1111/j.1755-0238.1997.tb00128.x es_ES
dc.description.references Medrano, H., Tomás, M., Martorell, S., Escalona, J.-M., Pou, A., Fuentes, S., … Bota, J. (2014). Improving water use efficiency of vineyards in semi-arid regions. A review. Agronomy for Sustainable Development, 35(2), 499-517. doi:10.1007/s13593-014-0280-z es_ES
dc.description.references Méndez, J.V., 2005. Estudio De La Maduración Fenológica Y Antocianica En Uvas Tintas De Bobal Para Diferentes Condiciones Agrológicas. Doctoral Thesis, p. 362. es_ES
dc.description.references Myers, B. J. (1988). Water stress integral--a link between short-term stress and long-term growth. Tree Physiology, 4(4), 315-323. doi:10.1093/treephys/4.4.315 es_ES
dc.description.references Niculcea, M., López, J., Sánchez-Díaz, M., & Carmen Antolín, M. (2014). Involvement of berry hormonal content in the response to pre- and post-veraison water deficit in different grapevine (Vitis vinifera L.) cultivars. Australian Journal of Grape and Wine Research, 20(2), 281-291. doi:10.1111/ajgw.12064 es_ES
dc.description.references PETRIE, P. R., COOLEY, N. M., & CLINGELEFFER, P. R. (2008). The effect of post-veraison water deficit on yield components and maturation of irrigated Shiraz (Vitis vinifera L.) in the current and following season. Australian Journal of Grape and Wine Research, 10(3), 203-215. doi:10.1111/j.1755-0238.2004.tb00024.x es_ES
dc.description.references Poni, S., Gatti, M., Palliotti, A., Dai, Z., Duchêne, E., Truong, T.-T., … Tombesi, S. (2018). Grapevine quality: A multiple choice issue. Scientia Horticulturae, 234, 445-462. doi:10.1016/j.scienta.2017.12.035 es_ES
dc.description.references ROBY, G., HARBERTSON, J. F., ADAMS, D. A., & MATTHEWS, M. A. (2004). Berry size and vine water deficits as factors in winegrape composition: Anthocyanins and tannins. Australian Journal of Grape and Wine Research, 10(2), 100-107. doi:10.1111/j.1755-0238.2004.tb00012.x es_ES
dc.description.references García Romero, E., Sánchez Muñoz, G., Martín Alvarez, P. J., & Cabezudo Ibáñez, M. D. (1993). Determination of organic acids in grape musts, wines and vinegars by high-performance liquid chromatography. Journal of Chromatography A, 655(1), 111-117. doi:10.1016/0021-9673(93)87018-h es_ES
dc.description.references Romero, P., Gil-Muñoz, R., del Amor, F. M., Valdés, E., Fernández, J. I., & Martinez-Cutillas, A. (2013). Regulated Deficit Irrigation based upon optimum water status improves phenolic composition in Monastrell grapes and wines. Agricultural Water Management, 121, 85-101. doi:10.1016/j.agwat.2013.01.007 es_ES
dc.description.references Simonneau, T., Lebon, E., Coupel-Ledru, A., Marguerit, E., Rossdeutsch, L., & Ollat, N. (2017). Adapting plant material to face water stress in vineyards: which physiological targets for an optimal control of plant water status? OENO One, 51(2), 167-179. doi:10.20870/oeno-one.2017.51.2.1870 es_ES
dc.description.references Tonietto, J., & Carbonneau, A. (2004). A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology, 124(1-2), 81-97. doi:10.1016/j.agrformet.2003.06.001 es_ES
dc.description.references Unterkofler, J., Muhlack, R. A., & Jeffery, D. W. (2020). Processes and purposes of extraction of grape components during winemaking: current state and perspectives. Applied Microbiology and Biotechnology, 104(11), 4737-4755. doi:10.1007/s00253-020-10558-3 es_ES
dc.description.references Van Leeuwen, C., & Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11(1), 150-167. doi:10.1017/jwe.2015.21 es_ES
dc.description.references WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., KERRIDGE, G. H., RÜHL, E. H., & NICHOLAS, P. R. (2005). Shiraz berry size in relation to seed number and implications for juice and wine composition. Australian Journal of Grape and Wine Research, 11(1), 2-8. doi:10.1111/j.1755-0238.2005.tb00273.x es_ES
dc.description.references Williams, L. E. (2012). Interaction of applied water amounts and leaf removal in the fruiting zone on grapevine water relations and productivity of Merlot. Irrigation Science, 30(5), 363-375. doi:10.1007/s00271-012-0355-z es_ES
dc.description.references Williams, L. E., & Ayars, J. E. (2005). Grapevine water use and the crop coefficient are linear functions of the shaded area measured beneath the canopy. Agricultural and Forest Meteorology, 132(3-4), 201-211. doi:10.1016/j.agrformet.2005.07.010 es_ES
dc.description.references Williams, L. E., Grimes, D. W., & Phene, C. J. (2009). The effects of applied water at various fractions of measured evapotranspiration on reproductive growth and water productivity of Thompson Seedless grapevines. Irrigation Science, 28(3), 233-243. doi:10.1007/s00271-009-0173-0 es_ES
dc.description.references Yu, R., Brillante, L., Martínez-Lüscher, J., & Kurtural, S. K. (2020). Spatial Variability of Soil and Plant Water Status and Their Cascading Effects on Grapevine Physiology Are Linked to Berry and Wine Chemistry. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00790 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem