Mostrar el registro sencillo del ítem
dc.contributor.author | Hernandez-Garcia, Eva | es_ES |
dc.contributor.author | Vargas, Maria | es_ES |
dc.contributor.author | Chiralt Boix, Mª Amparo | es_ES |
dc.date.accessioned | 2021-03-13T04:31:03Z | |
dc.date.available | 2021-03-13T04:31:03Z | |
dc.date.issued | 2021-04 | es_ES |
dc.identifier.issn | 0268-005X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/163818 | |
dc.description.abstract | [EN] Monolayer films based on cassava starch (CS) or maize starch (MS), with and without 10% of gellan or xanthan gum, and PLA-PHBV (75:25) blend films, were obtained by melt-blending and compression moulding, using glycerol (for starch blends) and PEG 1000 (for polyester blends) as plasticisers. Bilayer films were obtained by thermo-compression of the different starch based sheets with the polyester sheet. Both mono and bilayers were characterised as to their mechanical and barrier properties, equilibrium moisture, water solubility and microstructure. The incorporation of gellan gum and xanthan gum improved the mechanical properties of starch-based films, especially in the case of MS, although the highest EM and TS values were obtained for CS-gum films. The incorporation of either gellan or xanthan gum decreased the water vapour and oxygen permeability of starch-based films; the CS films with gums being the least permeable to oxygen. The lowest changes in mechanical properties throughout storage were obtained in cassava starch-based films, especially those containing xanthan gum. Starch based-polyester bilayers presented a high oxygen and water vapour barrier capacity, as compared to their individual monolayers. Bilayer films with cassava starch including the gums showed the lowest OP and WVP values and the highest elastic modulus and tensile strength, with extensibility values in the range of the corresponding monolayers and slight changes in their physical properties throughout time. The bilayer formed with cassava starch with gellan gum and a PLA-PHBV appeared as the best option for food packaging purposes taking into account its functional properties and the good layer adhesion of the bilayer. | es_ES |
dc.description.sponsorship | The authors would like to thank the Ministerio de Ciencia e Innovacion of Spain, for funding this study through the Project AGL2016-76699-R and PID2019-105207RB-I00, and the predoctoral research grant #BES-2017-082040. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Food Hydrocolloids | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Biodegradable bilayer films | es_ES |
dc.subject | PLA | es_ES |
dc.subject | PHBV | es_ES |
dc.subject | Starch | es_ES |
dc.subject | Gellan | es_ES |
dc.subject | Xanthan | es_ES |
dc.subject.classification | TECNOLOGIA DE ALIMENTOS | es_ES |
dc.title | Thermoprocessed starch-polyester bilayer films as affected by the addition of gellar or xantham gum | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.foodhyd.2020.106509 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//BES-2017-082040/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105207RB-I00/ES/USO DE ACIDOS FENOLICOS PARA LA OBTENCION DE MATERIALES MULTICAPA ACTIVOS PARA EL ENVASADO DE ALIMENTOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments | es_ES |
dc.description.bibliographicCitation | Hernandez-Garcia, E.; Vargas, M.; Chiralt Boix, MA. (2021). Thermoprocessed starch-polyester bilayer films as affected by the addition of gellar or xantham gum. Food Hydrocolloids. 113:1-9. https://doi.org/10.1016/j.foodhyd.2020.106509 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.foodhyd.2020.106509 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 113 | es_ES |
dc.relation.pasarela | S\423527 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Arismendi, C., Chillo, S., Conte, A., Del Nobile, M. A., Flores, S., & Gerschenson, L. N. (2013). Optimization of physical properties of xanthan gum/tapioca starch edible matrices containing potassium sorbate and evaluation of its antimicrobial effectiveness. LWT - Food Science and Technology, 53(1), 290-296. doi:10.1016/j.lwt.2013.01.022 | es_ES |
dc.description.references | Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 64(2), 980-988. doi:10.1016/j.lwt.2015.06.032 | es_ES |
dc.description.references | Balaguer, M. P., Gómez-Estaca, J., Gavara, R., & Hernandez-Munoz, P. (2011). Biochemical Properties of Bioplastics Made from Wheat Gliadins Cross-Linked with Cinnamaldehyde. Journal of Agricultural and Food Chemistry, 59(24), 13212-13220. doi:10.1021/jf203055s | es_ES |
dc.description.references | Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A., & Kenny, J. M. (2013). Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 119(2), 236-243. doi:10.1016/j.jfoodeng.2013.05.026 | es_ES |
dc.description.references | Cano, A., Chafer, M., Chiralt, A., & Gonzalez-Martinez, C. (2017). Strategies to Improve the Functionality of Starch-Based Films. Handbook of Composites from Renewable Materials, 311-337. doi:10.1002/9781119441632.ch74 | es_ES |
dc.description.references | Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075 | es_ES |
dc.description.references | Chaiwutthinan, P., Pimpan, V., Chuayjuljit, S., & Leejarkpai, T. (2014). Biodegradable Plastics Prepared from Poly(lactic acid), Poly(butylene succinate) and Microcrystalline Cellulose Extracted from Waste-Cotton Fabric with a Chain Extender. Journal of Polymers and the Environment, 23(1), 114-125. doi:10.1007/s10924-014-0689-0 | es_ES |
dc.description.references | Gasmi, S., Hassan, M. K., & Luyt, A. S. (2019). Crystallization and dielectric behaviour of PLA and PHBV in PLA/PHBV blends and PLA/PHBV/TiO2 nanocomposites. Express Polymer Letters, 13(2), 199-212. doi:10.3144/expresspolymlett.2019.16 | es_ES |
dc.description.references | McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.x | es_ES |
dc.description.references | Kim, S. R. B., Choi, Y.-G., Kim, J.-Y., & Lim, S.-T. (2015). Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. LWT - Food Science and Technology, 64(1), 475-482. doi:10.1016/j.lwt.2015.05.009 | es_ES |
dc.description.references | Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 38(3-4), 536-583. doi:10.1016/j.progpolymsci.2012.06.003 | es_ES |
dc.description.references | Liu, Q., Wu, C., Zhang, H., & Deng, B. (2015). Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit: Morphology, structure, and property. Journal of Applied Polymer Science, 132(42), n/a-n/a. doi:10.1002/app.42689 | es_ES |
dc.description.references | López, O. V., Zaritzky, N. E., Grossmann, M. V. E., & García, M. A. (2013). Acetylated and native corn starch blend films produced by blown extrusion. Journal of Food Engineering, 116(2), 286-297. doi:10.1016/j.jfoodeng.2012.12.032 | es_ES |
dc.description.references | Martin, O., Schwach, E., Averous, L., & Couturier, Y. (2001). Properties of Biodegradable Multilayer Films Based on Plasticized Wheat Starch. Starch - Stärke, 53(8), 372. doi:10.1002/1521-379x(200108)53:8<372::aid-star372>3.0.co;2-f | es_ES |
dc.description.references | Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019 | es_ES |
dc.description.references | Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155-165. doi:10.1016/j.carbpol.2014.03.059 | es_ES |
dc.description.references | Ortega-Toro, R., Morey, I., Talens, P., & Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282-290. doi:10.1016/j.carbpol.2015.03.080 | es_ES |
dc.description.references | Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003 | es_ES |
dc.description.references | Requena, R., Vargas, M., & Chiralt, A. (2018). Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocolloids, 83, 118-133. doi:10.1016/j.foodhyd.2018.04.045 | es_ES |
dc.description.references | Sapper, M., Talens, P., & Chiralt, A. (2019). Improving Functional Properties of Cassava Starch-Based Films by Incorporating Xanthan, Gellan, or Pullulan Gums. International Journal of Polymer Science, 2019, 1-8. doi:10.1155/2019/5367164 | es_ES |
dc.description.references | Savadekar, N. R., & Mhaske, S. T. (2012). Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydrate Polymers, 89(1), 146-151. doi:10.1016/j.carbpol.2012.02.063 | es_ES |
dc.description.references | Sikora, M., Kowalski, S., & Tomasik, P. (2008). Binary hydrocolloids from starches and xanthan gum. Food Hydrocolloids, 22(5), 943-952. doi:10.1016/j.foodhyd.2007.05.007 | es_ES |
dc.description.references | Silva-Guzmán, J. A., Anda, R. R., Fuentes-Talavera, F. J., Manríquez-González, R., & Lomelí-Ramírez, M. G. (2018). Properties of Thermoplastic Corn Starch Based Green Composites Reinforced with Barley (Hordeum vulgare L.) Straw Particles Obtained by Thermal Compression. Fibers and Polymers, 19(9), 1970-1979. doi:10.1007/s12221-018-8023-4 | es_ES |
dc.description.references | Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 79, 158-169. doi:10.1016/j.foodhyd.2017.12.021 | es_ES |
dc.description.references | Thongpina, C., Tippuwanan, C., Buaksuntear, K., & Chuawittayawuta, T. (2017). Mechanical and Thermal Properties of PLA Melt Blended with High Molecular Weight PEG Modified with Peroxide and Organo-Clay. Key Engineering Materials, 751, 337-343. doi:10.4028/www.scientific.net/kem.751.337 | es_ES |
dc.description.references | Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. doi:10.1016/j.eurpolymj.2010.12.011 | es_ES |
dc.description.references | Ortega-Toro, R., Collazo-Bigliardi, S., Talens, P., & Chiralt, A. (2015). Influence of citric acid on the properties and stability of starch-polycaprolactone based films. Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42220 | es_ES |