- -

Thermoprocessed starch-polyester bilayer films as affected by the addition of gellar or xantham gum

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermoprocessed starch-polyester bilayer films as affected by the addition of gellar or xantham gum

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Hernandez-Garcia, Eva es_ES
dc.contributor.author Vargas, Maria es_ES
dc.contributor.author Chiralt Boix, Mª Amparo es_ES
dc.date.accessioned 2021-03-13T04:31:03Z
dc.date.available 2021-03-13T04:31:03Z
dc.date.issued 2021-04 es_ES
dc.identifier.issn 0268-005X es_ES
dc.identifier.uri http://hdl.handle.net/10251/163818
dc.description.abstract [EN] Monolayer films based on cassava starch (CS) or maize starch (MS), with and without 10% of gellan or xanthan gum, and PLA-PHBV (75:25) blend films, were obtained by melt-blending and compression moulding, using glycerol (for starch blends) and PEG 1000 (for polyester blends) as plasticisers. Bilayer films were obtained by thermo-compression of the different starch based sheets with the polyester sheet. Both mono and bilayers were characterised as to their mechanical and barrier properties, equilibrium moisture, water solubility and microstructure. The incorporation of gellan gum and xanthan gum improved the mechanical properties of starch-based films, especially in the case of MS, although the highest EM and TS values were obtained for CS-gum films. The incorporation of either gellan or xanthan gum decreased the water vapour and oxygen permeability of starch-based films; the CS films with gums being the least permeable to oxygen. The lowest changes in mechanical properties throughout storage were obtained in cassava starch-based films, especially those containing xanthan gum. Starch based-polyester bilayers presented a high oxygen and water vapour barrier capacity, as compared to their individual monolayers. Bilayer films with cassava starch including the gums showed the lowest OP and WVP values and the highest elastic modulus and tensile strength, with extensibility values in the range of the corresponding monolayers and slight changes in their physical properties throughout time. The bilayer formed with cassava starch with gellan gum and a PLA-PHBV appeared as the best option for food packaging purposes taking into account its functional properties and the good layer adhesion of the bilayer. es_ES
dc.description.sponsorship The authors would like to thank the Ministerio de Ciencia e Innovacion of Spain, for funding this study through the Project AGL2016-76699-R and PID2019-105207RB-I00, and the predoctoral research grant #BES-2017-082040. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Food Hydrocolloids es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Biodegradable bilayer films es_ES
dc.subject PLA es_ES
dc.subject PHBV es_ES
dc.subject Starch es_ES
dc.subject Gellan es_ES
dc.subject Xanthan es_ES
dc.subject.classification TECNOLOGIA DE ALIMENTOS es_ES
dc.title Thermoprocessed starch-polyester bilayer films as affected by the addition of gellar or xantham gum es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.foodhyd.2020.106509 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2016-76699-R/ES/Materiales Biodegradables Multicapa de Alta Barrera para el Envasado Activo de Alimentos/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2017-082040/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-105207RB-I00/ES/USO DE ACIDOS FENOLICOS PARA LA OBTENCION DE MATERIALES MULTICAPA ACTIVOS PARA EL ENVASADO DE ALIMENTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments es_ES
dc.description.bibliographicCitation Hernandez-Garcia, E.; Vargas, M.; Chiralt Boix, MA. (2021). Thermoprocessed starch-polyester bilayer films as affected by the addition of gellar or xantham gum. Food Hydrocolloids. 113:1-9. https://doi.org/10.1016/j.foodhyd.2020.106509 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.foodhyd.2020.106509 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 113 es_ES
dc.relation.pasarela S\423527 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Arismendi, C., Chillo, S., Conte, A., Del Nobile, M. A., Flores, S., & Gerschenson, L. N. (2013). Optimization of physical properties of xanthan gum/tapioca starch edible matrices containing potassium sorbate and evaluation of its antimicrobial effectiveness. LWT - Food Science and Technology, 53(1), 290-296. doi:10.1016/j.lwt.2013.01.022 es_ES
dc.description.references Armentano, I., Fortunati, E., Burgos, N., Dominici, F., Luzi, F., Fiori, S., … Kenny, J. M. (2015). Bio-based PLA_PHB plasticized blend films: Processing and structural characterization. LWT - Food Science and Technology, 64(2), 980-988. doi:10.1016/j.lwt.2015.06.032 es_ES
dc.description.references Balaguer, M. P., Gómez-Estaca, J., Gavara, R., & Hernandez-Munoz, P. (2011). Biochemical Properties of Bioplastics Made from Wheat Gliadins Cross-Linked with Cinnamaldehyde. Journal of Agricultural and Food Chemistry, 59(24), 13212-13220. doi:10.1021/jf203055s es_ES
dc.description.references Bonilla, J., Fortunati, E., Vargas, M., Chiralt, A., & Kenny, J. M. (2013). Effects of chitosan on the physicochemical and antimicrobial properties of PLA films. Journal of Food Engineering, 119(2), 236-243. doi:10.1016/j.jfoodeng.2013.05.026 es_ES
dc.description.references Cano, A., Chafer, M., Chiralt, A., & Gonzalez-Martinez, C. (2017). Strategies to Improve the Functionality of Starch-Based Films. Handbook of Composites from Renewable Materials, 311-337. doi:10.1002/9781119441632.ch74 es_ES
dc.description.references Cano, A., Jiménez, A., Cháfer, M., Gónzalez, C., & Chiralt, A. (2014). Effect of amylose:amylopectin ratio and rice bran addition on starch films properties. Carbohydrate Polymers, 111, 543-555. doi:10.1016/j.carbpol.2014.04.075 es_ES
dc.description.references Chaiwutthinan, P., Pimpan, V., Chuayjuljit, S., & Leejarkpai, T. (2014). Biodegradable Plastics Prepared from Poly(lactic acid), Poly(butylene succinate) and Microcrystalline Cellulose Extracted from Waste-Cotton Fabric with a Chain Extender. Journal of Polymers and the Environment, 23(1), 114-125. doi:10.1007/s10924-014-0689-0 es_ES
dc.description.references Gasmi, S., Hassan, M. K., & Luyt, A. S. (2019). Crystallization and dielectric behaviour of PLA and PHBV in PLA/PHBV blends and PLA/PHBV/TiO2 nanocomposites. Express Polymer Letters, 13(2), 199-212. doi:10.3144/expresspolymlett.2019.16 es_ES
dc.description.references McHUGH, T. H., AVENA-BUSTILLOS, R., & KROCHTA, J. M. (1993). Hydrophilic Edible Films: Modified Procedure for Water Vapor Permeability and Explanation of Thickness Effects. Journal of Food Science, 58(4), 899-903. doi:10.1111/j.1365-2621.1993.tb09387.x es_ES
dc.description.references Kim, S. R. B., Choi, Y.-G., Kim, J.-Y., & Lim, S.-T. (2015). Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. LWT - Food Science and Technology, 64(1), 475-482. doi:10.1016/j.lwt.2015.05.009 es_ES
dc.description.references Laycock, B., Halley, P., Pratt, S., Werker, A., & Lant, P. (2013). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 38(3-4), 536-583. doi:10.1016/j.progpolymsci.2012.06.003 es_ES
dc.description.references Liu, Q., Wu, C., Zhang, H., & Deng, B. (2015). Blends of polylactide and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with low content of hydroxyvalerate unit: Morphology, structure, and property. Journal of Applied Polymer Science, 132(42), n/a-n/a. doi:10.1002/app.42689 es_ES
dc.description.references López, O. V., Zaritzky, N. E., Grossmann, M. V. E., & García, M. A. (2013). Acetylated and native corn starch blend films produced by blown extrusion. Journal of Food Engineering, 116(2), 286-297. doi:10.1016/j.jfoodeng.2012.12.032 es_ES
dc.description.references Martin, O., Schwach, E., Averous, L., & Couturier, Y. (2001). Properties of Biodegradable Multilayer Films Based on Plasticized Wheat Starch. Starch - Stärke, 53(8), 372. doi:10.1002/1521-379x(200108)53:8<372::aid-star372>3.0.co;2-f es_ES
dc.description.references Muller, J., González-Martínez, C., & Chiralt, A. (2017). Poly(lactic) acid (PLA) and starch bilayer films, containing cinnamaldehyde, obtained by compression moulding. European Polymer Journal, 95, 56-70. doi:10.1016/j.eurpolymj.2017.07.019 es_ES
dc.description.references Ortega-Toro, R., Jiménez, A., Talens, P., & Chiralt, A. (2014). Properties of starch–hydroxypropyl methylcellulose based films obtained by compression molding. Carbohydrate Polymers, 109, 155-165. doi:10.1016/j.carbpol.2014.03.059 es_ES
dc.description.references Ortega-Toro, R., Morey, I., Talens, P., & Chiralt, A. (2015). Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydrate Polymers, 127, 282-290. doi:10.1016/j.carbpol.2015.03.080 es_ES
dc.description.references Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338-356. doi:10.1016/j.progpolymsci.2009.12.003 es_ES
dc.description.references Requena, R., Vargas, M., & Chiralt, A. (2018). Obtaining antimicrobial bilayer starch and polyester-blend films with carvacrol. Food Hydrocolloids, 83, 118-133. doi:10.1016/j.foodhyd.2018.04.045 es_ES
dc.description.references Sapper, M., Talens, P., & Chiralt, A. (2019). Improving Functional Properties of Cassava Starch-Based Films by Incorporating Xanthan, Gellan, or Pullulan Gums. International Journal of Polymer Science, 2019, 1-8. doi:10.1155/2019/5367164 es_ES
dc.description.references Savadekar, N. R., & Mhaske, S. T. (2012). Synthesis of nano cellulose fibers and effect on thermoplastics starch based films. Carbohydrate Polymers, 89(1), 146-151. doi:10.1016/j.carbpol.2012.02.063 es_ES
dc.description.references Sikora, M., Kowalski, S., & Tomasik, P. (2008). Binary hydrocolloids from starches and xanthan gum. Food Hydrocolloids, 22(5), 943-952. doi:10.1016/j.foodhyd.2007.05.007 es_ES
dc.description.references Silva-Guzmán, J. A., Anda, R. R., Fuentes-Talavera, F. J., Manríquez-González, R., & Lomelí-Ramírez, M. G. (2018). Properties of Thermoplastic Corn Starch Based Green Composites Reinforced with Barley (Hordeum vulgare L.) Straw Particles Obtained by Thermal Compression. Fibers and Polymers, 19(9), 1970-1979. doi:10.1007/s12221-018-8023-4 es_ES
dc.description.references Tampau, A., González-Martínez, C., & Chiralt, A. (2018). Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocolloids, 79, 158-169. doi:10.1016/j.foodhyd.2017.12.021 es_ES
dc.description.references Thongpina, C., Tippuwanan, C., Buaksuntear, K., & Chuawittayawuta, T. (2017). Mechanical and Thermal Properties of PLA Melt Blended with High Molecular Weight PEG Modified with Peroxide and Organo-Clay. Key Engineering Materials, 751, 337-343. doi:10.4028/www.scientific.net/kem.751.337 es_ES
dc.description.references Vieira, M. G. A., da Silva, M. A., dos Santos, L. O., & Beppu, M. M. (2011). Natural-based plasticizers and biopolymer films: A review. European Polymer Journal, 47(3), 254-263. doi:10.1016/j.eurpolymj.2010.12.011 es_ES
dc.description.references Ortega-Toro, R., Collazo-Bigliardi, S., Talens, P., & Chiralt, A. (2015). Influence of citric acid on the properties and stability of starch-polycaprolactone based films. Journal of Applied Polymer Science, 133(2), n/a-n/a. doi:10.1002/app.42220 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem