- -

In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility

Mostrar el registro completo del ítem

Asensio-Grau, A.; Calvo-Lerma, J.; Heredia Gutiérrez, AB.; Andrés Grau, AM. (2021). In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility. Food Chemistry. 342:1-9. https://doi.org/10.1016/j.foodchem.2020.128387

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163821

Ficheros en el ítem

Metadatos del ítem

Título: In vitro digestion of salmon: Influence of processing and intestinal conditions on macronutrients digestibility
Autor: Asensio-Grau, Andrea Calvo-Lerma, Joaquim Heredia Gutiérrez, Ana Belén Andrés Grau, Ana María
Entidad UPV: Universitat Politècnica de València. Departamento de Tecnología de Alimentos - Departament de Tecnologia d'Aliments
Universitat Politècnica de València. Instituto Universitario de Ingeniería de Alimentos para el Desarrollo - Institut Universitari d'Enginyeria d'Aliments per al Desenvolupament
Fecha difusión:
Resumen:
[EN] Salmon is the main dietary source of omega-3 lipids and contains high-biological value protein. However, processing techniques could affect macronutrient digestibility. Also, altered intestinal conditions, particularly ...[+]
Palabras clave: Pancreatic insufficiency , Lipolysis , Proteolysis , Salmon , Processing
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Food Chemistry. (issn: 0308-8146 )
DOI: 10.1016/j.foodchem.2020.128387
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.foodchem.2020.128387
Código del Proyecto:
info:eu-repo/grantAgreement/EC/H2020/643806/EU/Innovative approach for self-management and social welfare of Cystic Fibrosis patients in Europe: development, validation and implementation of a telematics tool./
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F008/
info:eu-repo/grantAgreement/GVA//IDIFEDER%2F2018%2FA%2F041/ES/DESARROLLO DE ALIMENTOS Y ADAPTACIÓN DE PROCESOS DE FABRICACIÓN ORIENTADOS A NECESIDADES ESPECÍFICAS DE LA POBLACIÓN SÉNIOR/
Agradecimientos:
The authors would like to thank the Conselleria de Educacio i Investigacio de la Generalitat Valenciana and also the European Union ("El Fondo Social Europeo (FSE) invierte en tu futuro") for the PhD scholarship given to ...[+]
Tipo: Artículo

References

Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025

Asensio-Grau, A., Calvo-Lerma, J., Heredia, A., & Andrés, A. (2018). Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 70(5), 530-539. doi:10.1080/09637486.2018.1542665

Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278 [+]
Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2018). Effect of cooking methods and intestinal conditions on lipolysis, proteolysis and xanthophylls bioaccessibility of eggs. Journal of Functional Foods, 46, 579-586. doi:10.1016/j.jff.2018.05.025

Asensio-Grau, A., Calvo-Lerma, J., Heredia, A., & Andrés, A. (2018). Fat digestibility in meat products: influence of food structure and gastrointestinal conditions. International Journal of Food Sciences and Nutrition, 70(5), 530-539. doi:10.1080/09637486.2018.1542665

Asensio-Grau, A., Peinado, I., Heredia, A., & Andrés, A. (2019). In vitro study of cheese digestion: Effect of type of cheese and intestinal conditions on macronutrients digestibility. LWT, 113, 108278. doi:10.1016/j.lwt.2019.108278

Bax, M. L., Aubry, L., Ferreira, C., Daudin, J. D., Gatellier, P., Rémond, D., & Santé-Lhoutellier, V. (2012). Cooking temperature is a key determinant of in vitro meat protein digestion rate: Investigation of underlying mechanisms. Journal of Agricultural and Food Chemistry, 60, 2569–2576.

Calder, P. C. (2006). n−3 Polyunsaturated fatty acids, inflammation, and inflammatory diseases. The American Journal of Clinical Nutrition, 83(6), 1505S-1519S. doi:10.1093/ajcn/83.6.1505s

Calvo-Lerma, J., Fornés-Ferrer, V., Heredia, A., & Andrés, A. (2018). In Vitro Digestion of Lipids in Real Foods: Influence of Lipid Organization Within the Food Matrix and Interactions with Nonlipid Components. Journal of Food Science, 83(10), 2629-2637. doi:10.1111/1750-3841.14343

Carrière, F., Rogalska, E., Cudrey, C., Ferrato, F., Laugier, R., & Verger, R. (1997). In vivo and in vitro studies on the stereoselective hydrolysis of tri- and diglycerides by gastric and pancreatic lipases. Bioorganic & Medicinal Chemistry, 5(2), 429-435. doi:10.1016/s0968-0896(96)00251-9

Carrière, F., Grandval, P., Renou, C., Palomba, A., Priéri, F., Giallo, J., … Laugier, R. (2005). Quantitative study of digestive enzyme secretion and gastrointestinal lipolysis in chronic pancreatitis. Clinical Gastroenterology and Hepatology, 3(1), 28-38. doi:10.1016/s1542-3565(04)00601-9

COHEN, J., BELLINGER, D., CONNOR, W., KRISETHERTON, P., LAWRENCE, R., SAVITZ, D., … GRAY, G. (2005). A Quantitative Risk–Benefit Analysis of Changes in Population Fish Consumption. American Journal of Preventive Medicine, 29(4), 325-325. doi:10.1016/j.amepre.2005.07.003

Domínguez–Muñoz, J. E. (2011). Chronic Pancreatitis and Persistent Steatorrhea: What Is the Correct Dose of Enzymes? Clinical Gastroenterology and Hepatology, 9(7), 541-546. doi:10.1016/j.cgh.2011.02.027

Estévez, M., Ventanas, S., & Cava, R. (2005). Protein Oxidation in Frankfurters with Increasing Levels of Added Rosemary Essential Oil: Effect on Color and Texture Deterioration. Journal of Food Science, 70(7), c427-c432. doi:10.1111/j.1365-2621.2005.tb11464.x

Farmer, L. J., McConnell, J. M., & Kilpatrick, D. J. (2000). Sensory characteristics of farmed and wild Atlantic salmon. Aquaculture, 187(1-2), 105-125. doi:10.1016/s0044-8486(99)00393-2

Gass, J., Vora, H., Hofmann, A. F., Gray, G. M., & Khosla, C. (2007). Enhancement of Dietary Protein Digestion by Conjugated Bile Acids. Gastroenterology, 133(1), 16-23. doi:10.1053/j.gastro.2007.04.008

Gelfond, D., Ma, C., Semler, J., & Borowitz, D. (2012). Intestinal pH and Gastrointestinal Transit Profiles in Cystic Fibrosis Patients Measured by Wireless Motility Capsule. Digestive Diseases and Sciences, 58(8), 2275-2281. doi:10.1007/s10620-012-2209-1

GLADYSHEV, M., SUSHCHIK, N., GUBANENKO, G., DEMIRCHIEVA, S., & KALACHOVA, G. (2006). Effect of way of cooking on content of essential polyunsaturated fatty acids in muscle tissue of humpback salmon (). Food Chemistry, 96(3), 446-451. doi:10.1016/j.foodchem.2005.02.034

Grundy, M. M. L., Carrière, F., Mackie, A. R., Gray, D. A., Butterworth, P. J., & Ellis, P. R. (2016). The role of plant cell wall encapsulation and porosity in regulating lipolysis during the digestion of almond seeds. Food & Function, 7(1), 69-78. doi:10.1039/c5fo00758e

Guo, Q., Ye, A., Bellissimo, N., Singh, H., & Rousseau, D. (2017). Modulating fat digestion through food structure design. Progress in Lipid Research, 68, 109-118. doi:10.1016/j.plipres.2017.10.001

Hao, Z., Dong, H., Li, Z., & Lin, H. (2016). Analysis of physicochemical properties during the processing of Yiluxian, a traditional chinese low-salt fish product. International Journal of Food Science & Technology, 51(10), 2185-2192. doi:10.1111/ijfs.13171

Hosomi, R., Yoshida, M., & Fukunaga, K. (2012). Seafood Consumption and Components for Health. Global Journal of Health Science, 4(3). doi:10.5539/gjhs.v4n3p72

Humbert, L., Rainteau, D., Tuvignon, N., Wolf, C., Seksik, P., Laugier, R., & Carrière, F. (2018). Postprandial bile acid levels in intestine and plasma reveal altered biliary circulation in chronic pancreatitis patients. Journal of Lipid Research, 59(11), 2202-2213. doi:10.1194/jlr.m084830

Hunter, J. E. (2001). Studies on effects of dietary fatty acids as related to their position on triglycerides. Lipids, 36(7), 655-668. doi:10.1007/s11745-001-0770-0

LARRAZÁBAL-FUENTES, M. J., ESCRICHE-ROBERTO, I., & CAMACHO-VIDAL, M. D. M. (2009). USE OF IMMERSION AND VACUUM IMPREGNATION IN MARINATED SALMON (SALMO SALAR) PRODUCTION. Journal of Food Processing and Preservation, 33(5), 635-650. doi:10.1111/j.1745-4549.2008.00278.x

Larsen, D., Quek, S. Y., & Eyres, L. (2010). Effect of cooking method on the fatty acid profile of New Zealand King Salmon (Oncorhynchus tshawytscha). Food Chemistry, 119(2), 785-790. doi:10.1016/j.foodchem.2009.07.037

Lamothe, S., Azimy, N., Bazinet, L., Couillard, C., & Britten, M. (2014). Interaction of green tea polyphenols with dairy matrices in a simulated gastrointestinal environment. Food Funct., 5(10), 2621-2631. doi:10.1039/c4fo00203b

Laub-Ekgreen, M. H., Martinez-Lopez, B., Frosch, S., & Jessen, F. (2018). The influence of processing conditions on the weight change of single herring (Clupea herengus) fillets during marinating. Food Research International, 108, 331-338. doi:10.1016/j.foodres.2018.03.055

Li, L., & Somerset, S. (2014). Digestive system dysfunction in cystic fibrosis: Challenges for nutrition therapy. Digestive and Liver Disease, 46(10), 865-874. doi:10.1016/j.dld.2014.06.011

Louis, P., Hold, G. L., & Flint, H. J. (2014). The gut microbiota, bacterial metabolites and colorectal cancer. Nature Reviews Microbiology, 12(10), 661-672. doi:10.1038/nrmicro3344

Mackie, A., & Macierzanka, A. (2010). Colloidal aspects of protein digestion. Current Opinion in Colloid & Interface Science, 15(1-2), 102-108. doi:10.1016/j.cocis.2009.11.005

Maldonado-Valderrama, J., Wilde, P., Macierzanka, A., & Mackie, A. (2011). The role of bile salts in digestion. Advances in Colloid and Interface Science, 165(1), 36-46. doi:10.1016/j.cis.2010.12.002

Minekus, M., Alminger, M., Alvito, P., Ballance, S., Bohn, T. O. R. S. T. E. N., Bourlieu, C., & Dufour, C. (2014). A standardised static in vitro digestion method suitable for food–an international consensus.Food & Function,5(6), 1113–1124.

Motilva, M.-J., & Toldr�, F. (1993). Effect of curing agents and water activity on pork muscle and adipose subcutaneous tissue lipolytic activity. Zeitschrift f�r Lebensmittel-Untersuchung und -Forschung, 196(3), 228-232. doi:10.1007/bf01202737

Nieva-Echevarría, B., Goicoechea, E., Manzanos, M. J., & Guillén, M. D. (2015). Usefulness of 1H NMR in assessing the extent of lipid digestion. Food Chemistry, 179, 182-190. doi:10.1016/j.foodchem.2015.01.104

Nieva-Echevarría, B., Goicoechea, E., Manzanos, M. J., & Guillén, M. D. (2014). A method based on 1H NMR spectral data useful to evaluate the hydrolysis level in complex lipid mixtures. Food Research International, 66, 379-387. doi:10.1016/j.foodres.2014.09.031

Promeyrat, A., Gatellier, P., Lebret, B., Kajak-Siemaszko, K., Aubry, L., & Santé-Lhoutellier, V. (2010). Evaluation of protein aggregation in cooked meat. Food Chemistry, 121(2), 412-417. doi:10.1016/j.foodchem.2009.12.057

Sarkar, A., Ye, A., & Singh, H. (2016). On the role of bile salts in the digestion of emulsified lipids. Food Hydrocolloids, 60, 77-84. doi:10.1016/j.foodhyd.2016.03.018

Simopoulos, A. (2016). An Increase in the Omega-6/Omega-3 Fatty Acid Ratio Increases the Risk for Obesity. Nutrients, 8(3), 128. doi:10.3390/nu8030128

Spyros, A., Philippidis, A., & Dais, P. (2003). Kinetics of Diglyceride Formation and Isomerization in Virgin Olive Oils by Employing 31P NMR Spectroscopy. Formulation of a Quantitative Measure to Assess Olive Oil Storage History. Journal of Agricultural and Food Chemistry, 52(2), 157-164. doi:10.1021/jf030586j

Sun, W., Zhou, F., Zhao, M., Yang, B., & Cui, C. (2011). Physicochemical changes of myofibrillar proteins during processing of Cantonese sausage in relation to their aggregation behaviour and in vitro digestibility. Food Chemistry, 129(2), 472-478. doi:10.1016/j.foodchem.2011.04.101

Ridlon, J. M., Kang, D.-J., & Hylemon, P. B. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research, 47(2), 241-259. doi:10.1194/jlr.r500013-jlr200

Toldrá, F. (2003). Muscle Foods: Water, Structure and Functionality. Food Science and Technology International, 9(3), 173-177. doi:10.1177/1082013203035048

Turck, D., Braegger, C. P., Colombo, C., Declercq, D., Morton, A., Pancheva, R., … Wilschanski, M. (2016). ESPEN-ESPGHAN-ECFS guidelines on nutrition care for infants, children, and adults with cystic fibrosis. Clinical Nutrition, 35(3), 557-577. doi:10.1016/j.clnu.2016.03.004

Zhang, W., Xiao, S., & Ahn, D. U. (2013). Protein Oxidation: Basic Principles and Implications for Meat Quality. Critical Reviews in Food Science and Nutrition, 53(11), 1191-1201. doi:10.1080/10408398.2011.577540

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem