Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620
Kreuer, K.-D., & Portale, G. (2013). A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications. Advanced Functional Materials, 23(43), 5390-5397. doi:10.1002/adfm.201300376
Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004
[+]
Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620
Kreuer, K.-D., & Portale, G. (2013). A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications. Advanced Functional Materials, 23(43), 5390-5397. doi:10.1002/adfm.201300376
Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004
Di Noto, V., Lavina, S., Giffin, G. A., Negro, E., & Scrosati, B. (2011). Polymer electrolytes: Present, past and future. Electrochimica Acta, 57, 4-13. doi:10.1016/j.electacta.2011.08.048
Tarascon, J.-M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. doi:10.1038/35104644
Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k
Reinholdt, M. X., & Kaliaguine, S. (2010). Proton Exchange Membranes for Application in Fuel Cells: Grafted Silica/SPEEK Nanocomposite Elaboration and Characterization. Langmuir, 26(13), 11184-11195. doi:10.1021/la100051j
Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024
Ghosh, S., Maity, S., & Jana, T. (2011). Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell. Journal of Materials Chemistry, 21(38), 14897. doi:10.1039/c1jm12169c
Escorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182
Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f
Özdemir, Y., Üregen, N., & Devrim, Y. (2017). Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2648-2657. doi:10.1016/j.ijhydene.2016.04.132
Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009
Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g
Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775
Barjola, A., Escorihuela, J., Andrio, A., Giménez, E., & Compañ, V. (2018). Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials, 8(12), 1042. doi:10.3390/nano8121042
Liu, S., Zhou, L., Wang, P., Zhang, F., Yu, S., Shao, Z., & Yi, B. (2014). Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Applied Materials & Interfaces, 6(5), 3195-3200. doi:10.1021/am404645c
Kallem, P., Eguizabal, A., Mallada, R., & Pina, M. P. (2016). Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport. ACS Applied Materials & Interfaces, 8(51), 35377-35389. doi:10.1021/acsami.6b13315
Kallem, P., Drobek, M., Julbe, A., Vriezekolk, E. J., Mallada, R., & Pina, M. P. (2017). Hierarchical Porous Polybenzimidazole Microsieves: An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids. ACS Applied Materials & Interfaces, 9(17), 14844-14857. doi:10.1021/acsami.7b01916
Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7), 1391-1398. doi:10.1351/pac200072071391
Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677j
Rehman, A., & Zeng, X. (2012). Ionic Liquids as Green Solvents and Electrolytes for Robust Chemical Sensor Development. Accounts of Chemical Research, 45(10), 1667-1677. doi:10.1021/ar200330v
Qureshi, Z. S., Deshmukh, K. M., & Bhanage, B. M. (2013). Applications of ionic liquids in organic synthesis and catalysis. Clean Technologies and Environmental Policy, 16(8), 1487-1513. doi:10.1007/s10098-013-0660-0
Ventura, S. P. M., e Silva, F. A., Quental, M. V., Mondal, D., Freire, M. G., & Coutinho, J. A. P. (2017). Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chemical Reviews, 117(10), 6984-7052. doi:10.1021/acs.chemrev.6b00550
González-Mendoza, L., Altava, B., Burguete, M. I., Escorihuela, J., Hernando, E., Luis, S. V., … Vicent, C. (2015). Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions. RSC Advances, 5(43), 34415-34423. doi:10.1039/c5ra05880e
Dai, C., Zhang, J., Huang, C., & Lei, Z. (2017). Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chemical Reviews, 117(10), 6929-6983. doi:10.1021/acs.chemrev.7b00030
González, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2014). Chiral Room Temperature Ionic Liquids as Enantioselective Promoters for the Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2014(24), 5356-5363. doi:10.1002/ejoc.201402436
Lu, F., Gao, X., Wu, A., Sun, N., Shi, L., & Zheng, L. (2017). Lithium-Containing Zwitterionic Poly(Ionic Liquid)s as Polymer Electrolytes for Lithium-Ion Batteries. The Journal of Physical Chemistry C, 121(33), 17756-17763. doi:10.1021/acs.jpcc.7b06242
Quinn, B. M., Ding, Z., Moulton, R., & Bard, A. J. (2002). Novel Electrochemical Studies of Ionic Liquids. Langmuir, 18(5), 1734-1742. doi:10.1021/la011458x
Santos, M. C. G., Silva, G. G., Santamaría, R., Ortega, P. F. R., & Lavall, R. L. (2019). Discussion on Operational Voltage and Efficiencies of Ionic-Liquid-Based Electrochemical Capacitors. The Journal of Physical Chemistry C, 123(14), 8541-8549. doi:10.1021/acs.jpcc.8b11607
Watanabe, M., Thomas, M. L., Zhang, S., Ueno, K., Yasuda, T., & Dokko, K. (2017). Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 117(10), 7190-7239. doi:10.1021/acs.chemrev.6b00504
Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109
Rewar, A. S., Chaudhari, H. D., Illathvalappil, R., Sreekumar, K., & Kharul, U. K. (2014). New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties. Journal of Materials Chemistry A, 2(35), 14449. doi:10.1039/c4ta02184c
Van de Ven, E., Chairuna, A., Merle, G., Benito, S. P., Borneman, Z., & Nijmeijer, K. (2013). Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. Journal of Power Sources, 222, 202-209. doi:10.1016/j.jpowsour.2012.07.112
Mamlouk, M., Ocon, P., & Scott, K. (2014). Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 245, 915-926. doi:10.1016/j.jpowsour.2013.07.050
Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4
Macdonald, J. R. (2010). Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation–recombination effects. Journal of Physics: Condensed Matter, 22(49), 495101. doi:10.1088/0953-8984/22/49/495101
Macdonald, J. R., Evangelista, L. R., Lenzi, E. K., & Barbero, G. (2011). Comparison of Impedance Spectroscopy Expressions and Responses of Alternate Anomalous Poisson−Nernst−Planck Diffusion Equations for Finite-Length Situations. The Journal of Physical Chemistry C, 115(15), 7648-7655. doi:10.1021/jp200737z
Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700
Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w
Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1
Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility. Journal of Non-Crystalline Solids, 144, 14-20. doi:10.1016/s0022-3093(05)80378-3
Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947
Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004
Sangoro, J. R., Serghei, A., Naumov, S., Galvosas, P., Kärger, J., Wespe, C., … Kremer, F. (2008). Charge transport and mass transport in imidazolium-based ionic liquids. Physical Review E, 77(5). doi:10.1103/physreve.77.051202
Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301
Sangoro, J. R., Iacob, C., Agapov, A. L., Wang, Y., Berdzinski, S., Rexhausen, H., … Kremer, F. (2014). Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter, 10(20), 3536-3540. doi:10.1039/c3sm53202j
Mauritz, K. A. (1989). Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4. Long-range ion transport. Macromolecules, 22(12), 4483-4488. doi:10.1021/ma00202a018
Wübbenhorst, M., & van Turnhout, J. (2002). Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. Journal of Non-Crystalline Solids, 305(1-3), 40-49. doi:10.1016/s0022-3093(02)01086-4
Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732
The Oxidative Stability of the Membranes Was Investigated by Immersing the Membranes in Fenton’s Reagent (3% H2O2 Solution Containing 4 Ppm Fe2+) at 70 °C. The Samples Were Collected by Filtering and Rinsed with Deionized Water Several Times, Then Dried at 120 °C for 5 H in a Vacuum Oven. Next, the Degradation of the Membranes Was Evaluated by Their Weight Loss.
Nyquist, H. (1928). Thermal Agitation of Electric Charge in Conductors. Physical Review, 32(1), 110-113. doi:10.1103/physrev.32.110
Schröder, C., Rudas, T., & Steinhauser, O. (2006). Simulation studies of ionic liquids: Orientational correlations and static dielectric properties. The Journal of Chemical Physics, 125(24), 244506. doi:10.1063/1.2404674
Tsuzuki, S., Tokuda, H., Hayamizu, K., & Watanabe, M. (2005). Magnitude and Directionality of Interaction in Ion Pairs of Ionic Liquids: Relationship with Ionic Conductivity. The Journal of Physical Chemistry B, 109(34), 16474-16481. doi:10.1021/jp0533628
Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913
Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820a
Weingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951
Kuriakose, M., Longuemart, S., Depriester, M., Delenclos, S., & Sahraoui, A. H. (2014). Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Physical Review E, 89(2). doi:10.1103/physreve.89.022511
Samet, M., Levchenko, V., Boiteux, G., Seytre, G., Kallel, A., & Serghei, A. (2015). Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. The Journal of Chemical Physics, 142(19), 194703. doi:10.1063/1.4919877
Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308
Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638
Valverde, D., Garcia-Bernabé, A., Andrio, A., García-Verdugo, E., Luis, S. V., & Compañ, V. (2019). Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Physical Chemistry Chemical Physics, 21(32), 17923-17932. doi:10.1039/c9cp01903k
Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2008). Molecular Mobility, Ion Mobility, and Mobile Ion Concentration in Poly(ethylene oxide)-Based Polyurethane Ionomers. Macromolecules, 41(15), 5723-5728. doi:10.1021/ma800263b
[-]