- -

Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes

Mostrar el registro completo del ítem

Compañ Moreno, V.; Escorihuela Fuentes, J.; Olvera, J.; Garcia-Bernabe, A.; Andrio, A. (2020). Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes. Electrochimica Acta. 354:1-12. https://doi.org/10.1016/j.electacta.2020.136666

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/163975

Ficheros en el ítem

Metadatos del ítem

Título: Influence of the anion on diffusivity and mobility of ionic liquids composite polybenzimidazol membranes
Autor: Compañ Moreno, Vicente Escorihuela Fuentes, Jorge Olvera, Jessica Garcia-Bernabe, Abel ANDRIO, ANDREU
Entidad UPV: Universitat Politècnica de València. Departamento de Termodinámica Aplicada - Departament de Termodinàmica Aplicada
Fecha difusión:
Resumen:
[EN] The study of proton conductivity processes has received increasing attention in the past decades due to their potential applications in fields such as electrochemical devices and fuel cells. Despite the high number ...[+]
Palabras clave: Polymer electrolytes , Polybenzimidazole , Ionic liquids , Conductivity , Ionic transport , Mobility , Electrochemical impedance spectroscopy
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Electrochimica Acta. (issn: 0013-4686 )
DOI: 10.1016/j.electacta.2020.136666
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.electacta.2020.136666
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//ENE2015-69203-R/ES/DESARROLLO Y EVALUACION DE NUEVAS MEMBRANAS POLIMERICAS REFORZADAS CON NANOFIBRAS PARA SU APLICACION EN PILAS DE COMBUSTIBLE CON ELEVADA ESTABILIDAD TERMICA/
Agradecimientos:
This work was financially supported by the Ministerio de Economia y Competitividad (MINECO) under project ENE2015-69203-R.
Tipo: Artículo

References

Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620

Kreuer, K.-D., & Portale, G. (2013). A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications. Advanced Functional Materials, 23(43), 5390-5397. doi:10.1002/adfm.201300376

Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004 [+]
Steele, B. C. H., & Heinzel, A. (2001). Materials for fuel-cell technologies. Nature, 414(6861), 345-352. doi:10.1038/35104620

Kreuer, K.-D., & Portale, G. (2013). A Critical Revision of the Nano-Morphology of Proton Conducting Ionomers and Polyelectrolytes for Fuel Cell Applications. Advanced Functional Materials, 23(43), 5390-5397. doi:10.1002/adfm.201300376

Bakangura, E., Wu, L., Ge, L., Yang, Z., & Xu, T. (2016). Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 57, 103-152. doi:10.1016/j.progpolymsci.2015.11.004

Di Noto, V., Lavina, S., Giffin, G. A., Negro, E., & Scrosati, B. (2011). Polymer electrolytes: Present, past and future. Electrochimica Acta, 57, 4-13. doi:10.1016/j.electacta.2011.08.048

Tarascon, J.-M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. doi:10.1038/35104644

Kraytsberg, A., & Ein-Eli, Y. (2014). Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 28(12), 7303-7330. doi:10.1021/ef501977k

Reinholdt, M. X., & Kaliaguine, S. (2010). Proton Exchange Membranes for Application in Fuel Cells: Grafted Silica/SPEEK Nanocomposite Elaboration and Characterization. Langmuir, 26(13), 11184-11195. doi:10.1021/la100051j

Araya, S. S., Zhou, F., Liso, V., Sahlin, S. L., Vang, J. R., Thomas, S., … Kær, S. K. (2016). A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 41(46), 21310-21344. doi:10.1016/j.ijhydene.2016.09.024

Ghosh, S., Maity, S., & Jana, T. (2011). Polybenzimidazole/silica nanocomposites: Organic-inorganic hybrid membranes for PEM fuel cell. Journal of Materials Chemistry, 21(38), 14897. doi:10.1039/c1jm12169c

Escorihuela, García-Bernabé, Montero, Andrio, Sahuquillo, Giménez, & Compañ. (2019). Proton Conductivity through Polybenzimidazole Composite Membranes Containing Silica Nanofiber Mats. Polymers, 11(7), 1182. doi:10.3390/polym11071182

Fuentes, I., Andrio, A., García-Bernabé, A., Escorihuela, J., Viñas, C., Teixidor, F., & Compañ, V. (2018). Structural and dielectric properties of cobaltacarborane composite polybenzimidazole membranes as solid polymer electrolytes at high temperature. Physical Chemistry Chemical Physics, 20(15), 10173-10184. doi:10.1039/c8cp00372f

Özdemir, Y., Üregen, N., & Devrim, Y. (2017). Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2648-2657. doi:10.1016/j.ijhydene.2016.04.132

Üregen, N., Pehlivanoğlu, K., Özdemir, Y., & Devrim, Y. (2017). Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2636-2647. doi:10.1016/j.ijhydene.2016.07.009

Reyes-Rodriguez, J. L., Escorihuela, J., García-Bernabé, A., Giménez, E., Solorza-Feria, O., & Compañ, V. (2017). Proton conducting electrospun sulfonated polyether ether ketone graphene oxide composite membranes. RSC Advances, 7(84), 53481-53491. doi:10.1039/c7ra10484g

Escorihuela, J., Sahuquillo, Ó., García-Bernabé, A., Giménez, E., & Compañ, V. (2018). Phosphoric Acid Doped Polybenzimidazole (PBI)/Zeolitic Imidazolate Framework Composite Membranes with Significantly Enhanced Proton Conductivity under Low Humidity Conditions. Nanomaterials, 8(10), 775. doi:10.3390/nano8100775

Barjola, A., Escorihuela, J., Andrio, A., Giménez, E., & Compañ, V. (2018). Enhanced Conductivity of Composite Membranes Based on Sulfonated Poly(Ether Ether Ketone) (SPEEK) with Zeolitic Imidazolate Frameworks (ZIFs). Nanomaterials, 8(12), 1042. doi:10.3390/nano8121042

Liu, S., Zhou, L., Wang, P., Zhang, F., Yu, S., Shao, Z., & Yi, B. (2014). Ionic-Liquid-Based Proton Conducting Membranes for Anhydrous H2/Cl2 Fuel-Cell Applications. ACS Applied Materials & Interfaces, 6(5), 3195-3200. doi:10.1021/am404645c

Kallem, P., Eguizabal, A., Mallada, R., & Pina, M. P. (2016). Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport. ACS Applied Materials & Interfaces, 8(51), 35377-35389. doi:10.1021/acsami.6b13315

Kallem, P., Drobek, M., Julbe, A., Vriezekolk, E. J., Mallada, R., & Pina, M. P. (2017). Hierarchical Porous Polybenzimidazole Microsieves: An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids. ACS Applied Materials & Interfaces, 9(17), 14844-14857. doi:10.1021/acsami.7b01916

Earle, M. J., & Seddon, K. R. (2000). Ionic liquids. Green solvents for the future. Pure and Applied Chemistry, 72(7), 1391-1398. doi:10.1351/pac200072071391

Plechkova, N. V., & Seddon, K. R. (2008). Applications of ionic liquids in the chemical industry. Chem. Soc. Rev., 37(1), 123-150. doi:10.1039/b006677j

Rehman, A., & Zeng, X. (2012). Ionic Liquids as Green Solvents and Electrolytes for Robust Chemical Sensor Development. Accounts of Chemical Research, 45(10), 1667-1677. doi:10.1021/ar200330v

Qureshi, Z. S., Deshmukh, K. M., & Bhanage, B. M. (2013). Applications of ionic liquids in organic synthesis and catalysis. Clean Technologies and Environmental Policy, 16(8), 1487-1513. doi:10.1007/s10098-013-0660-0

Ventura, S. P. M., e Silva, F. A., Quental, M. V., Mondal, D., Freire, M. G., & Coutinho, J. A. P. (2017). Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends. Chemical Reviews, 117(10), 6984-7052. doi:10.1021/acs.chemrev.6b00550

González-Mendoza, L., Altava, B., Burguete, M. I., Escorihuela, J., Hernando, E., Luis, S. V., … Vicent, C. (2015). Bis(imidazolium) salts derived from amino acids as receptors and transport agents for chloride anions. RSC Advances, 5(43), 34415-34423. doi:10.1039/c5ra05880e

Dai, C., Zhang, J., Huang, C., & Lei, Z. (2017). Ionic Liquids in Selective Oxidation: Catalysts and Solvents. Chemical Reviews, 117(10), 6929-6983. doi:10.1021/acs.chemrev.7b00030

González, L., Escorihuela, J., Altava, B., Burguete, M. I., & Luis, S. V. (2014). Chiral Room Temperature Ionic Liquids as Enantioselective Promoters for the Asymmetric Aldol Reaction. European Journal of Organic Chemistry, 2014(24), 5356-5363. doi:10.1002/ejoc.201402436

Lu, F., Gao, X., Wu, A., Sun, N., Shi, L., & Zheng, L. (2017). Lithium-Containing Zwitterionic Poly(Ionic Liquid)s as Polymer Electrolytes for Lithium-Ion Batteries. The Journal of Physical Chemistry C, 121(33), 17756-17763. doi:10.1021/acs.jpcc.7b06242

Quinn, B. M., Ding, Z., Moulton, R., & Bard, A. J. (2002). Novel Electrochemical Studies of Ionic Liquids. Langmuir, 18(5), 1734-1742. doi:10.1021/la011458x

Santos, M. C. G., Silva, G. G., Santamaría, R., Ortega, P. F. R., & Lavall, R. L. (2019). Discussion on Operational Voltage and Efficiencies of Ionic-Liquid-Based Electrochemical Capacitors. The Journal of Physical Chemistry C, 123(14), 8541-8549. doi:10.1021/acs.jpcc.8b11607

Watanabe, M., Thomas, M. L., Zhang, S., Ueno, K., Yasuda, T., & Dokko, K. (2017). Application of Ionic Liquids to Energy Storage and Conversion Materials and Devices. Chemical Reviews, 117(10), 7190-7239. doi:10.1021/acs.chemrev.6b00504

Dechnik, J., Gascon, J., Doonan, C. J., Janiak, C., & Sumby, C. J. (2017). Mixed‐Matrix Membranes. Angewandte Chemie International Edition, 56(32), 9292-9310. doi:10.1002/anie.201701109

Rewar, A. S., Chaudhari, H. D., Illathvalappil, R., Sreekumar, K., & Kharul, U. K. (2014). New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties. Journal of Materials Chemistry A, 2(35), 14449. doi:10.1039/c4ta02184c

Van de Ven, E., Chairuna, A., Merle, G., Benito, S. P., Borneman, Z., & Nijmeijer, K. (2013). Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. Journal of Power Sources, 222, 202-209. doi:10.1016/j.jpowsour.2012.07.112

Mamlouk, M., Ocon, P., & Scott, K. (2014). Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 245, 915-926. doi:10.1016/j.jpowsour.2013.07.050

Macdonald, J. R. (1953). Theory of ac Space-Charge Polarization Effects in Photoconductors, Semiconductors, and Electrolytes. Physical Review, 92(1), 4-17. doi:10.1103/physrev.92.4

Macdonald, J. R. (2010). Utility of continuum diffusion models for analyzing mobile-ion immittance data: electrode polarization, bulk, and generation–recombination effects. Journal of Physics: Condensed Matter, 22(49), 495101. doi:10.1088/0953-8984/22/49/495101

Macdonald, J. R., Evangelista, L. R., Lenzi, E. K., & Barbero, G. (2011). Comparison of Impedance Spectroscopy Expressions and Responses of Alternate Anomalous Poisson−Nernst−Planck Diffusion Equations for Finite-Length Situations. The Journal of Physical Chemistry C, 115(15), 7648-7655. doi:10.1021/jp200737z

Coelho, R. (1983). Sur la relaxation d’une charge d’espace. Revue de Physique Appliquée, 18(3), 137-146. doi:10.1051/rphysap:01983001803013700

Coelho, R. (1991). On the static permittivity of dipolar and conductive media — an educational approach. Journal of Non-Crystalline Solids, 131-133, 1136-1139. doi:10.1016/0022-3093(91)90740-w

Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting oxide glasses. I. Model and frequency response. Journal of Non-Crystalline Solids, 144, 1-13. doi:10.1016/s0022-3093(05)80377-1

Schütt, H. J., & Gerdes, E. (1992). Space-charge relaxation in ionicly conducting glasses. II. Free carrier concentration and mobility. Journal of Non-Crystalline Solids, 144, 14-20. doi:10.1016/s0022-3093(05)80378-3

Sørensen, T. S., Compañ, V., & Diaz-Calleja, R. (1996). Complex permittivity of a film of poly[4-(acryloxy)phenyl-(4-chlorophenyl)methanone] containing free ion impurities and the separation of the contributions from interfacial polarization, Maxwell–Wagner–Sillars effects and dielectric relaxations of the polymer chains. J. Chem. Soc., Faraday Trans., 92(11), 1947-1957. doi:10.1039/ft9969201947

Bandara, T. M. W. J., Dissanayake, M. A. K. L., Albinsson, I., & Mellander, B.-E. (2011). Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+I− using electrical and dielectric measurements. Solid State Ionics, 189(1), 63-68. doi:10.1016/j.ssi.2011.03.004

Sangoro, J. R., Serghei, A., Naumov, S., Galvosas, P., Kärger, J., Wespe, C., … Kremer, F. (2008). Charge transport and mass transport in imidazolium-based ionic liquids. Physical Review E, 77(5). doi:10.1103/physreve.77.051202

Serghei, A., Tress, M., Sangoro, J. R., & Kremer, F. (2009). Electrode polarization and charge transport at solid interfaces. Physical Review B, 80(18). doi:10.1103/physrevb.80.184301

Sangoro, J. R., Iacob, C., Agapov, A. L., Wang, Y., Berdzinski, S., Rexhausen, H., … Kremer, F. (2014). Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids. Soft Matter, 10(20), 3536-3540. doi:10.1039/c3sm53202j

Mauritz, K. A. (1989). Dielectric relaxation studies of ion motions in electrolyte-containing perfluorosulfonate ionomers. 4. Long-range ion transport. Macromolecules, 22(12), 4483-4488. doi:10.1021/ma00202a018

Wübbenhorst, M., & van Turnhout, J. (2002). Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. Journal of Non-Crystalline Solids, 305(1-3), 40-49. doi:10.1016/s0022-3093(02)01086-4

Escorihuela, J., García-Bernabé, A., Montero, Á., Sahuquillo, Ó., Giménez, E., & Compañ, V. (2019). Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 11(4), 732. doi:10.3390/polym11040732

The Oxidative Stability of the Membranes Was Investigated by Immersing the Membranes in Fenton’s Reagent (3% H2O2 Solution Containing 4 Ppm Fe2+) at 70 °C. The Samples Were Collected by Filtering and Rinsed with Deionized Water Several Times, Then Dried at 120 °C for 5 H in a Vacuum Oven. Next, the Degradation of the Membranes Was Evaluated by Their Weight Loss.

Nyquist, H. (1928). Thermal Agitation of Electric Charge in Conductors. Physical Review, 32(1), 110-113. doi:10.1103/physrev.32.110

Schröder, C., Rudas, T., & Steinhauser, O. (2006). Simulation studies of ionic liquids: Orientational correlations and static dielectric properties. The Journal of Chemical Physics, 125(24), 244506. doi:10.1063/1.2404674

Tsuzuki, S., Tokuda, H., Hayamizu, K., & Watanabe, M. (2005). Magnitude and Directionality of Interaction in Ion Pairs of Ionic Liquids:  Relationship with Ionic Conductivity. The Journal of Physical Chemistry B, 109(34), 16474-16481. doi:10.1021/jp0533628

Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913

Gebbie, M. A., Smith, A. M., Dobbs, H. A., Lee, A. A., Warr, G. G., Banquy, X., … Atkin, R. (2017). Long range electrostatic forces in ionic liquids. Chemical Communications, 53(7), 1214-1224. doi:10.1039/c6cc08820a

Weingärtner, H. (2008). Understanding Ionic Liquids at the Molecular Level: Facts, Problems, and Controversies. Angewandte Chemie International Edition, 47(4), 654-670. doi:10.1002/anie.200604951

Kuriakose, M., Longuemart, S., Depriester, M., Delenclos, S., & Sahraoui, A. H. (2014). Maxwell-Wagner-Sillars effects on the thermal-transport properties of polymer-dispersed liquid crystals. Physical Review E, 89(2). doi:10.1103/physreve.89.022511

Samet, M., Levchenko, V., Boiteux, G., Seytre, G., Kallel, A., & Serghei, A. (2015). Electrode polarization vs. Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: Characteristic frequencies and scaling laws. The Journal of Chemical Physics, 142(19), 194703. doi:10.1063/1.4919877

Wang, Y., Sun, C.-N., Fan, F., Sangoro, J. R., Berman, M. B., Greenbaum, S. G., … Sokolov, A. P. (2013). Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Physical Review E, 87(4). doi:10.1103/physreve.87.042308

Klein, R. J., Zhang, S., Dou, S., Jones, B. H., Colby, R. H., & Runt, J. (2006). Modeling electrode polarization in dielectric spectroscopy: Ion mobility and mobile ion concentration of single-ion polymer electrolytes. The Journal of Chemical Physics, 124(14), 144903. doi:10.1063/1.2186638

Valverde, D., Garcia-Bernabé, A., Andrio, A., García-Verdugo, E., Luis, S. V., & Compañ, V. (2019). Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions. Physical Chemistry Chemical Physics, 21(32), 17923-17932. doi:10.1039/c9cp01903k

Fragiadakis, D., Dou, S., Colby, R. H., & Runt, J. (2008). Molecular Mobility, Ion Mobility, and Mobile Ion Concentration in Poly(ethylene oxide)-Based Polyurethane Ionomers. Macromolecules, 41(15), 5723-5728. doi:10.1021/ma800263b

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem