Mostrar el registro sencillo del ítem
dc.contributor.author | Bolinches, Antonio | es_ES |
dc.contributor.author | De Stefano, Lucia | es_ES |
dc.contributor.author | Paredes Arquiola, Javier | es_ES |
dc.date.accessioned | 2021-03-23T04:31:33Z | |
dc.date.available | 2021-03-23T04:31:33Z | |
dc.date.issued | 2020-09-23 | es_ES |
dc.identifier.issn | 1866-6280 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164059 | |
dc.description.abstract | [EN] Freshwater quality is deteriorating worldwide. In populated areas, urban pollution is the main pressure on surface continental waters, but intensive wastewater treatment is costly. Setting standards for treatment of wastewater before discharge is a major policy instrument for water authorities, balancing environmental gains and operational costs. Discharge permits usually define concentration limits at the discharge point of the plant effluent. This approach, however, may not guarantee the good status of the receiving waters. Discharge permits should be directly linked to pollutant concentration in the river. Our paper develops an approach to adaptively adjust discharge permits and applies it to Madrid and the Manzanares river, a city of more than 3 million inhabitants discharging its treated wastewater to a stream having less than 2 m(3) s(-1) average flow. Stricter limits to 5-day biological oxygen demand (11 mg O-2 L-1), ammonium (0.5 mg N-NH4 L-1), nitrate (5.9 mg N-NO3 L-1), and phosphate (0.17 mg P-PO4 L-1) at plant effluent are required to meet the river environmental objectives. The results can be generalized to assess wastewater management decisions in other geographical areas. | es_ES |
dc.description.sponsorship | The authors wish to thank the Tagus River Basin Authority (Confederacion Hidrografica del Tajo) for their availability and readiness to share information, and the anonymous reviewers for their valuable and constructive comments. This research was funded by the Botin Foundation, Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Springer-Verlag | es_ES |
dc.relation.ispartof | Environmental Earth Sciences | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Wastewater | es_ES |
dc.subject | Water framework directive | es_ES |
dc.subject | Water quality | es_ES |
dc.subject | Tagus basin | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | Adjusting wastewater treatment effluent standards to protect the receiving waters: the case of low flow rivers in central Spain | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1007/s12665-020-09184-z | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Bolinches, A.; De Stefano, L.; Paredes Arquiola, J. (2020). Adjusting wastewater treatment effluent standards to protect the receiving waters: the case of low flow rivers in central Spain. Environmental Earth Sciences. 79:1-17. https://doi.org/10.1007/s12665-020-09184-z | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1007/s12665-020-09184-z | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 17 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 79 | es_ES |
dc.relation.pasarela | S\418318 | es_ES |
dc.contributor.funder | Fundación Botín | es_ES |
dc.description.references | AEMET (2018) Standard climate Values: Madrid, Retiro. https://www.aemet.es/en/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=3195&k=mad. Accessed 25 June 2019 | es_ES |
dc.description.references | Alexakis D, Kagalou I, Tsakiris G (2013) Assessment of pressures and impacts on surface water bodies of the Mediterranean. Case study: Pamvotis Lake, Greece. Environ Earth Sci 70:687–698. https://doi.org/10.1007/s12665-012-2152-7 | es_ES |
dc.description.references | Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726. https://doi.org/10.1007/BF02804901 | es_ES |
dc.description.references | Andreu J, Capilla J, Sanchís E (1996) AQUATOOL, a generalized decision-support system for water-resources planning and operational management. J Hydrol 177:269–291. https://doi.org/10.1016/0022-1694(95)02963-X | es_ES |
dc.description.references | Arora S, Keshari AK (2018) Estimation of re-aeration coefficient using MLR for modelling water quality of rivers in urban environment. Groundw Sustain Dev. https://doi.org/10.1016/j.gsd.2017.11.006 | es_ES |
dc.description.references | Asad Ismaiel I, Bird G, McDonald MA et al (2018) Establishment of background water quality conditions in the Great Zab River catchment: influence of geogenic and anthropogenic controls on developing a baseline for water quality assessment and resource management. Environ Earth Sci 77:50. https://doi.org/10.1007/s12665-017-7190-8 | es_ES |
dc.description.references | Astaraie-Imani M, Kapelan Z, Fu G, Butler D (2012) Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK. J Environ Manag 112:1–9. https://doi.org/10.1016/j.jenvman.2012.06.039 | es_ES |
dc.description.references | Bahamonde PA, Fuzzen ML, Bennett CJ et al (2015) Whole organism responses and intersex severity in rainbow darter (Etheostoma caeruleum) following exposures to municipal wastewater in the Grand River basin, ON, Canada. Part A Aquat Toxicol 159:290–301. https://doi.org/10.1016/J.AQUATOX.2014.11.023 | es_ES |
dc.description.references | Bowie GL, Mills WB, Porcella DB et al (1985) Rates, constants, and kinetics formulations in surface water quality modeling. U.S. Environmental Protection Agency, Athens | es_ES |
dc.description.references | Carey RO, Migliaccio KW (2009) Contribution of wastewater treatment plant effluents to nutrient dynamics in aquatic systems: a review. Environ Manag 44:205–217. https://doi.org/10.1007/s00267-009-9309-5 | es_ES |
dc.description.references | Chang F-J, Tsai Y-H, Chen P-A et al (2015) Modeling water quality in an urban river using hydrological factors and data driven approaches. J Environ Manag. https://doi.org/10.1016/j.jenvman.2014.12.014 | es_ES |
dc.description.references | Chapra SC (2008) Surface water-quality modeling. Waveland Press, Long Grove | es_ES |
dc.description.references | Confederación Hidrográfica del Tajo (2018) Resultados/informes: aguas superficiales—control fisicoquímico. https://www.chtajo.es/LaCuenca/CalidadAgua/Resultados_Informes/Paginas/RISupFisicoQuímico.aspx. Accessed 24 May 2018 | es_ES |
dc.description.references | Corominas L, Acuña V, Ginebreda A, Poch M (2013) Integration of freshwater environmental policies and wastewater treatment plant management. Sci Total Environ 445–446:185–191. https://doi.org/10.1016/J.SCITOTENV.2012.12.055 | es_ES |
dc.description.references | Council of the European Communities (1991) Council Directive of 21 May 1991 concerning urban waste water treatment (91/271/EEC). OJ | es_ES |
dc.description.references | Cox BA, Whitehead PG (2009) Impacts of climate change scenarios on dissolved oxygen in the River Thames, UK. Hydrol Res 40:138–152. https://doi.org/10.2166/nh.2009.096 | es_ES |
dc.description.references | Cubillo F, Rodriguez B, Barnwell TO (1992) A system for control of river water quality for the community of Madrid using QUAL2E. Water Sci Technol 26:1867–1873 | es_ES |
dc.description.references | Dodds W, Smith V (2016) Nitrogen, phosphorus, and eutrophication in streams. Inl Waters 6:155–164. https://doi.org/10.5268/IW-6.2.909 | es_ES |
dc.description.references | Dojlido J, Best GA (1993) Chemistry of water and water pollution. E. Horwood, Chichester | es_ES |
dc.description.references | Donigian AS (2002) Watershed model calibration and validation: the HSPF experience. Proc Water Environ Fed 2002:44–73 | es_ES |
dc.description.references | Duh JD, Shandas V, Chang H, George LA (2008) Rates of urbanisation and the resiliency of air and water quality. Sci Total Environ 400:238–256 | es_ES |
dc.description.references | European Commission (2019) Report from the commission to the European Parliament and Council on the implementation of the Water Framework Directive (2000/60/EC) and the Floods Directive (2007/60/EC). Brussels | es_ES |
dc.description.references | European Parliament and Council (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. OJ 2014–7001 | es_ES |
dc.description.references | Even S, Mouchel J-M, Servais P et al (2007) Modelling the impacts of combined sewer overflows on the river Seine water quality. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2006.12.007 | es_ES |
dc.description.references | Fonseca A, Botelho C, Boaventura RAR, Vilar VJP (2014) Integrated hydrological and water quality model for river management: a case study on Lena River. Sci Total Environ 485–486:474–489. https://doi.org/10.1016/j.scitotenv.2014.03.111 | es_ES |
dc.description.references | Gallego Bernad MS, Sánchez Pérez MÁ (2006) La destrucción ambiental del río Tajo: orígenes, procesos y consecuencias. In: V congreso Ibérico sobre Gestión y Planificación del Agua, Faro | es_ES |
dc.description.references | Genkai-Kato M, Carpenter SR (2005) Eutrophication due to phosphorus recycling in relation to lake morphometry, temperature, and macrophytes. Ecology 86(1):210–219 | es_ES |
dc.description.references | Google Earth (2018) Google Earth. https://earth.google.com/web/@40.4012607,-3.71553269,604.85487896a,8051.22382757d,35y,0h,0t,0r. Accessed 24 May 2018 | es_ES |
dc.description.references | Griffiths JA, Ka F, Chan S et al (2017) Reach-scale variation surface water quality in a reticular canal system in the lower Yangtze River Delta region, China. J Environ Manag 196:80–90. https://doi.org/10.1016/j.jenvman.2017.02.079 | es_ES |
dc.description.references | Hernández-Sancho F, Molinos-Senante M, Sala-Garrido R (2011) Cost modelling for wastewater treatment processes. Desalination 268:1–5. https://doi.org/10.1016/J.DESAL.2010.09.042 | es_ES |
dc.description.references | Hutchins MG, Bowes MJ (2018) Balancing water demand needs with protection of river water quality by minimising stream residence time: an example from the Thames, UK. Water Resour Manag 32:2561–2568. https://doi.org/10.1007/s11269-018-1946-0 | es_ES |
dc.description.references | IGN Instituto Geográfico Nacional (2018) Centro de Descargas del CNIG (IGN). https://centrodedescargas.cnig.es/CentroDescargas/index.jsp. Accessed 24 May 2018 | es_ES |
dc.description.references | IGN Instituto Geográfico Nacional (2020) Atlas Nacional de España. https://atlasnacional.ign.es/. Accessed 19 May 2020 | es_ES |
dc.description.references | INE (2018) Cifras oficiales de población resultantes de la revisión del Padrón municipal. https://www.ine.es/jaxiT3/Tabla.htm?t=2881&L=0. Accessed 7 Apr 2019 | es_ES |
dc.description.references | INE Instituto Nacional de Estadística (2018) Survey on water supply and sewerage. https://www.ine.es/dynt3/inebase/index.htm?type=pcaxis&path=/t26/p069/p03/serie&file=pcaxis&L=1. Accessed 24 May 2018 | es_ES |
dc.description.references | Jasinska EJ, Goss GG, Gillis PL et al (2015) Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge. Sci Total Environ 530–531:140–153. https://doi.org/10.1016/J.SCITOTENV.2015.05.080 | es_ES |
dc.description.references | Jin L, Whitehead PG, Heppell CM et al (2016) Modelling flow and inorganic nitrogen dynamics on the Hampshire Avon: linking upstream processes to downstream water quality. Sci Total Environ 572:1496–1506. https://doi.org/10.1016/j.scitotenv.2016.02.156 | es_ES |
dc.description.references | Kloas W, Urbatzka R, Opitz R et al (2009) Endocrine disruption in aquatic vertebrates. Ann N Y Acad Sci 1163:187–200. https://doi.org/10.1111/j.1749-6632.2009.04453.x | es_ES |
dc.description.references | Kottek M, Grieser J, Beck C et al (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130 | es_ES |
dc.description.references | Lastra A (2017) Minimizando el impacto de los vertidos en tiempo de lluvia. El caso de Madrid. In: V Jornadas de Ingeniería del Agua, p 2017 | es_ES |
dc.description.references | Loos S, Middelkoop H, van der Perk M, van Beek R (2009) Large scale nutrient modelling using globally available datasets: a test for the Rhine basin. J Hydrol 369:403–415. https://doi.org/10.1016/j.jhydrol.2009.02.019 | es_ES |
dc.description.references | Madrid City Council (2017) Padrón Municipal de Habitantes Ciudad de Madrid, pp 1–45 | es_ES |
dc.description.references | Madrid City Council (2018) Zonas Alcantarillado Municipio Madrid. https://www.madrid.es/UnidadesDescentralizadas/Agua/DeInformacionsobreAgua/SistemasDepuracion/2017ZonasAlcantarilladoMunicipioMadrid.pdf.pdf. Accessed 24 May 2018 | es_ES |
dc.description.references | Mapama M de AA y M ambiente (2011) Resolución de 30 de junio de 2011, de la Secretaría de Estado de Medio Rural y Agua, por la que se declaran las zonas sensibles en las cuencas intercomunitarias. Off Bull Spain | es_ES |
dc.description.references | Mapama M de AA y M ambiente (2016) Real Decreto 1/2016, de 8 de enero, por el que se aprueba la revisión de los Planes Hidrológicos de las demarcaciones (...) y de la parte española de las demarcaciones hidrográficas del Cantábrico Oriental, Miño-Sil, Duero, Tajo, Guadiana y Ebro. Off Bull Spain 16, pp 2972–4301 | es_ES |
dc.description.references | Mapama M de AA y M ambiente (2018) Redes de seguimiento. https://sig.mapama.gob.es/redes-seguimiento/. Accessed 26 June 2019 | es_ES |
dc.description.references | McGrane SJ (2016) Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrol Sci J 61:2295–2311. https://doi.org/10.1080/02626667.2015.1128084 | es_ES |
dc.description.references | Momblanch A, Paredes-Arquiola J, Munné A et al (2015) Managing water quality under drought conditions in the Llobregat River Basin. Sci Total Environ 503–504:300–318. https://doi.org/10.1016/j.scitotenv.2014.06.069 | es_ES |
dc.description.references | Moriasi DN, Arnold JG, Van Liew MW et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900. https://doi.org/10.13031/2013.23153 | es_ES |
dc.description.references | Morris L, Colombo V, Hassell K et al (2017) Municipal wastewater effluent licensing: a global perspective and recommendations for best practice. Sci Total Environ 580:1327–1339. https://doi.org/10.1016/J.SCITOTENV.2016.12.096 | es_ES |
dc.description.references | Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290. https://doi.org/10.1016/0022-1694(70)90255-6 | es_ES |
dc.description.references | Ostace GS, Baeza JA, Guerrero J et al (2013) Development and economic assessment of different WWTP control strategies for optimal simultaneous removal of carbon, nitrogen and phosphorus. Comput Chem Eng 53:164–177. https://doi.org/10.1016/J.COMPCHEMENG.2013.03.007 | es_ES |
dc.description.references | Paredes J, Andreu J, Solera A (2010) A decision support system for water quality issues in the Manzanares River (Madrid, Spain). Sci Total Environ 408:2576–2589. https://doi.org/10.1016/j.scitotenv.2010.02.037 | es_ES |
dc.description.references | Paredes-Arquiola S (2013) Modelo gescal para la simulación de la calidad del agua en sistemas de recursos hídricos | es_ES |
dc.description.references | Paredes-Arquiola J, Andreu-Álvarez J, Martín-Monerris M, Solera A (2010) Water quantity and quality models applied to the Jucar River Basin, Spain. Water Resour Manag 24:2759–2779. https://doi.org/10.1007/s11269-010-9578-z | es_ES |
dc.description.references | Paredes-Arquiola J, Solera A, Martinez-Capel F et al (2014) Integrating water management, habitat modelling and water quality at the basin scale and environmental flow assessment: case study of the Tormes River, Spain. Hydrol Sci J 59:878–889. https://doi.org/10.1080/02626667.2013.821573 | es_ES |
dc.description.references | Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365. https://doi.org/10.1146/annurev.ecolsys.32.081501.114040 | es_ES |
dc.description.references | Santhi C, Arnold JG, Williams JR et al (2001) Validation of the SWAT model on a large river basin with point and nonpoint sources. J Am Water Resour Assoc 37:1169–1188. https://doi.org/10.1111/j.1752-1688.2001.tb03630.x | es_ES |
dc.description.references | Sferratore A, Billen G, Garnier J, Théry S (2005) Modeling nutrient (N, P, Si) budget in the Seine watershed: application of the Riverstrahler model using data from local to global scale resolution. Glob Biogeochem Cycles 19:1–14. https://doi.org/10.1029/2005GB002496 | es_ES |
dc.description.references | Singh J, Knapp HV, Arnold JG, Demissie M (2005) Hydrological modeling of the Iroquois river watershed using HSPF and SWAT. J Am Water Resour Assoc 41:343–360. https://doi.org/10.1111/j.1752-1688.2005.tb03740.x | es_ES |
dc.description.references | Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196. https://doi.org/10.1016/S0269-7491(99)00091-3 | es_ES |
dc.description.references | Soares Cruz MA, de Azevedo GA, de Aragão R et al (2019) Spatial and seasonal variability of the water quality characteristics of a river in Northeast Brazil. Environ Earth Sci 78:68. https://doi.org/10.1007/s12665-019-8087-5 | es_ES |
dc.description.references | Soil Conservation Service (1972) SCS national engineering handbook, section 4: hydrology | es_ES |
dc.description.references | Thomann RV, Mueller JA (1987) Principles of surface water quality modeling and control. HarperCollins, New York | es_ES |
dc.description.references | United Nations Environment Program (2015) Good practices for regulating wastewater treatment. Legislations, Policies and Standards | es_ES |