Mostrar el registro sencillo del ítem
dc.contributor.author | Bolinches, Antonio | es_ES |
dc.contributor.author | Paredes Arquiola, Javier | es_ES |
dc.contributor.author | Garrido, Alberto | es_ES |
dc.contributor.author | De Stefano, Lucia | es_ES |
dc.date.accessioned | 2021-03-23T04:31:38Z | |
dc.date.available | 2021-03-23T04:31:38Z | |
dc.date.issued | 2020-10-15 | es_ES |
dc.identifier.issn | 0048-9697 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164061 | |
dc.description.abstract | [EN] Freshwater ecosystems and water uses may be jeopardized by the degradation of water quality. The Water Framework Directive of the European Union (EU) sets environmental objectives for water bodies but foresees the establishment of exemptions under some circumstances. The criteria used to justify these exemptions, however, are not fully developed, leaving their application open to some arbitrariness. Our study explores the relations between the magnitude of pressures affecting continental surface water bodies and the declared exemptions on the permitted concentration of nitrogen. It identifies different approaches to declare exemptions to nitrogen environmental objectives across six EU Member States and discusses the underlying criteria. A better understanding of the pressures-impact-measures/exemptions relation helps compare water policy decisions across different regions subject to the same legal obligations and set priorities for mitigation measures. | es_ES |
dc.description.sponsorship | This research was funded by the Botín Foundation, Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | The Science of The Total Environment | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Water Framework Directive | es_ES |
dc.subject | Exemptions | es_ES |
dc.subject | Nitrogen | es_ES |
dc.subject | Nutrients | es_ES |
dc.subject.classification | INGENIERIA HIDRAULICA | es_ES |
dc.title | A comparative analysis of the application of water quality exemptions in the European Union: The case of nitrogen | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.scitotenv.2020.139891 | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient | es_ES |
dc.description.bibliographicCitation | Bolinches, A.; Paredes Arquiola, J.; Garrido, A.; De Stefano, L. (2020). A comparative analysis of the application of water quality exemptions in the European Union: The case of nitrogen. The Science of The Total Environment. 739:1-14. https://doi.org/10.1016/j.scitotenv.2020.139891 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.scitotenv.2020.139891 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 739 | es_ES |
dc.identifier.pmid | 32540657 | es_ES |
dc.relation.pasarela | S\413828 | es_ES |
dc.contributor.funder | Fundación Botín | es_ES |
dc.description.references | Arnold, J. G., Srinivasan, R., Muttiah, R. S., & Williams, J. R. (1998). LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT. Journal of the American Water Resources Association, 34(1), 73-89. doi:10.1111/j.1752-1688.1998.tb05961.x | es_ES |
dc.description.references | Birk, S., Willby, N. J., Kelly, M. G., Bonne, W., Borja, A., Poikane, S., & van de Bund, W. (2013). Intercalibrating classifications of ecological status: Europe’s quest for common management objectives for aquatic ecosystems. Science of The Total Environment, 454-455, 490-499. doi:10.1016/j.scitotenv.2013.03.037 | es_ES |
dc.description.references | Boeuf, B., Fritsch, O., & Martin-Ortega, J. (2018). Justifying exemptions through policy appraisal: ecological ambitions and water policy in France and the United Kingdom. Water Policy, 20(3), 647-666. doi:10.2166/wp.2018.108 | es_ES |
dc.description.references | Bolinches, A., De Stefano, L., & Paredes-Arquiola, J. (2020). Designing river water quality policy interventions with scarce data: the case of the Middle Tagus Basin, Spain. Hydrological Sciences Journal, 65(5), 749-762. doi:10.1080/02626667.2019.1708915 | es_ES |
dc.description.references | Bouraoui, F., & Grizzetti, B. (2014). Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Science of The Total Environment, 468-469, 1267-1277. doi:10.1016/j.scitotenv.2013.07.066 | es_ES |
dc.description.references | El-Nasr, A. A., Arnold, J. G., Feyen, J., & Berlamont, J. (2005). Modelling the hydrology of a catchment using a distributed and a semi-distributed model. Hydrological Processes, 19(3), 573-587. doi:10.1002/hyp.5610 | es_ES |
dc.description.references | Elrashidi, M. A., Mays, M. D., Peaslee, S. D., & Hooper, D. G. (2005). A Technique to Estimate Nitrate–Nitrogen Loss by Runoff and Leaching for Agricultural Land, Lancaster County, Nebraska. Communications in Soil Science and Plant Analysis, 35(17-18), 2593-2615. doi:10.1081/lcss-200030396 | es_ES |
dc.description.references | Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 1(10), 636-639. doi:10.1038/ngeo325 | es_ES |
dc.description.references | GALLOWAY, J. N., ABER, J. D., ERISMAN, J. W., SEITZINGER, S. P., HOWARTH, R. W., COWLING, E. B., & COSBY, B. J. (2003). The Nitrogen Cascade. BioScience, 53(4), 341. doi:10.1641/0006-3568(2003)053[0341:tnc]2.0.co;2 | es_ES |
dc.description.references | Grizzetti, B., Bouraoui, F., & De Marsily, G. (2008). Assessing nitrogen pressures on European surface water. Global Biogeochemical Cycles, 22(4), n/a-n/a. doi:10.1029/2007gb003085 | es_ES |
dc.description.references | Hering, D., Borja, A., Carstensen, J., Carvalho, L., Elliott, M., Feld, C. K., … Pont, D. (2010). The European Water Framework Directive at the age of 10: A critical review of the achievements with recommendations for the future. Science of The Total Environment, 408(19), 4007-4019. doi:10.1016/j.scitotenv.2010.05.031 | es_ES |
dc.description.references | Jähnig, S. C., Brabec, K., Buffagni, A., Erba, S., Lorenz, A. W., Ofenböck, T., … Hering, D. (2010). A comparative analysis of restoration measures and their effects on hydromorphology and benthic invertebrates in 26 central and southern European rivers. Journal of Applied Ecology, 47(3), 671-680. doi:10.1111/j.1365-2664.2010.01807.x | es_ES |
dc.description.references | Klauer, B., Sigel, K., & Schiller, J. (2016). Disproportionate costs in the EU Water Framework Directive—How to justify less stringent environmental objectives. Environmental Science & Policy, 59, 10-17. doi:10.1016/j.envsci.2016.01.017 | es_ES |
dc.description.references | Macháč, J., & Brabec, J. (2017). Assessment of Disproportionate Costs According to the WFD: Comparison of Applications of two Approaches in the Catchment of the Stanovice Reservoir (Czech Republic). Water Resources Management, 32(4), 1453-1466. doi:10.1007/s11269-017-1879-z | es_ES |
dc.description.references | Maia, R. (2017). The WFD Implementation in the European Member States. Water Resources Management, 31(10), 3043-3060. doi:10.1007/s11269-017-1723-5 | es_ES |
dc.description.references | Mulder, A. (2003). The quest for sustainable nitrogen removal technologies. Water Science and Technology, 48(1), 67-75. doi:10.2166/wst.2003.0018 | es_ES |
dc.description.references | Munafò, M., Cecchi, G., Baiocco, F., & Mancini, L. (2005). River pollution from non-point sources: a new simplified method of assessment. Journal of Environmental Management, 77(2), 93-98. doi:10.1016/j.jenvman.2005.02.016 | es_ES |
dc.description.references | PALMER, M. A., MENNINGER, H. L., & BERNHARDT, E. (2010). River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology, 55, 205-222. doi:10.1111/j.1365-2427.2009.02372.x | es_ES |
dc.description.references | Pelletier, G. J., Chapra, S. C., & Tao, H. (2006). QUAL2Kw – A framework for modeling water quality in streams and rivers using a genetic algorithm for calibration. Environmental Modelling & Software, 21(3), 419-425. doi:10.1016/j.envsoft.2005.07.002 | es_ES |
dc.description.references | Poikane, S., Kelly, M. G., Salas Herrero, F., Pitt, J.-A., Jarvie, H. P., Claussen, U., … Phillips, G. (2019). Nutrient criteria for surface waters under the European Water Framework Directive: Current state-of-the-art, challenges and future outlook. Science of The Total Environment, 695, 133888. doi:10.1016/j.scitotenv.2019.133888 | es_ES |
dc.description.references | Smith, R. A., Schwarz, G. E., & Alexander, R. B. (1997). Regional interpretation of water-quality monitoring data. Water Resources Research, 33(12), 2781-2798. doi:10.1029/97wr02171 | es_ES |
dc.description.references | Stewart, W. M., Dibb, D. W., Johnston, A. E., & Smyth, T. J. (2005). The Contribution of Commercial Fertilizer Nutrients to Food Production. Agronomy Journal, 97(1), 1-6. doi:10.2134/agronj2005.0001 | es_ES |
dc.description.references | Vinten, A. J. A., Martin-Ortega, J., Glenk, K., Booth, P., Balana, B. B., MacLeod, M., … Jones, M. (2012). Application of the WFD cost proportionality principle to diffuse pollution mitigation: A case study for Scottish Lochs. Journal of Environmental Management, 97, 28-37. doi:10.1016/j.jenvman.2011.10.015 | es_ES |
dc.description.references | Yang, Y. S., & Wang, L. (2009). A Review of Modelling Tools for Implementation of the EU Water Framework Directive in Handling Diffuse Water Pollution. Water Resources Management, 24(9), 1819-1843. doi:10.1007/s11269-009-9526-y | es_ES |
dc.description.references | Zhang, H., & Huang, G. H. (2011). Assessment of non-point source pollution using a spatial multicriteria analysis approach. Ecological Modelling, 222(2), 313-321. doi:10.1016/j.ecolmodel.2009.12.011 | es_ES |