- -

Water resources sustainability model for wetland conservation based on anonymous expert elicitation

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Water resources sustainability model for wetland conservation based on anonymous expert elicitation

Mostrar el registro completo del ítem

Canto-Perello, J.; Benitez-Navio, A.; Martín Utrillas, MG.; Martinez-Leon, J.; Curiel Esparza, J. (2021). Water resources sustainability model for wetland conservation based on anonymous expert elicitation. Environmental Modelling & Software. 136:1-12. https://doi.org/10.1016/j.envsoft.2020.104952

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164063

Ficheros en el ítem

Metadatos del ítem

Título: Water resources sustainability model for wetland conservation based on anonymous expert elicitation
Autor: Canto-Perello, Julian Benitez-Navio, Alberto Martín Utrillas, Manuel Guzmán Martinez-Leon, Jesus Curiel Esparza, Jorge
Entidad UPV: Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada
Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] Wetlands play a key role in preserving biodiversity and preventing climate change. Their conservation poses an important and pressing challenge. In the Mediterranean region, one of the key threats to wetland survival ...[+]
Palabras clave: Sustainability model , Wetlands conservation , Hydrological restoration , Physico-chemical indicators , Expert elicitation
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Environmental Modelling & Software. (issn: 1364-8152 )
DOI: 10.1016/j.envsoft.2020.104952
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.envsoft.2020.104952
Tipo: Artículo

References

Aguilera, H., & Merino, L. M. (2018). Data on chemical composition of soil and water in the semiarid wetland of Las Tablas de Damiel National Park (Spain) during a drought period. Data in Brief, 19, 2481-2486. doi:10.1016/j.dib.2018.04.085

Aguilera, H., Moreno, L., Wesseling, J. G., Jiménez-Hernández, M. E., & Castaño, S. (2016). Soil moisture prediction to support management in semiarid wetlands during drying episodes. CATENA, 147, 709-724. doi:10.1016/j.catena.2016.08.007

Alafifi, A. H., & Rosenberg, D. E. (2020). Systems modeling to improve river, riparian, and wetland habitat quality and area. Environmental Modelling & Software, 126, 104643. doi:10.1016/j.envsoft.2020.104643 [+]
Aguilera, H., & Merino, L. M. (2018). Data on chemical composition of soil and water in the semiarid wetland of Las Tablas de Damiel National Park (Spain) during a drought period. Data in Brief, 19, 2481-2486. doi:10.1016/j.dib.2018.04.085

Aguilera, H., Moreno, L., Wesseling, J. G., Jiménez-Hernández, M. E., & Castaño, S. (2016). Soil moisture prediction to support management in semiarid wetlands during drying episodes. CATENA, 147, 709-724. doi:10.1016/j.catena.2016.08.007

Alafifi, A. H., & Rosenberg, D. E. (2020). Systems modeling to improve river, riparian, and wetland habitat quality and area. Environmental Modelling & Software, 126, 104643. doi:10.1016/j.envsoft.2020.104643

Alvarez Etxeberria, I., Garayar, A., & Calvo Sánchez, J. A. (2015). Development of sustainability reports for farming operations in the Basque Country using the Delphi method. Revista de Contabilidad, 18(1), 44-54. doi:10.1016/j.rcsar.2014.03.004

Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849-2861. doi:10.1016/j.watres.2008.03.018

Bilotta, G. S., Burnside, N. G., Cheek, L., Dunbar, M. J., Grove, M. K., Harrison, C., … Davy-Bowker, J. (2012). Developing environment-specific water quality guidelines for suspended particulate matter. Water Research, 46(7), 2324-2332. doi:10.1016/j.watres.2012.01.055

Blaas, H., & Kroeze, C. (2016). Excessive nitrogen and phosphorus in European rivers: 2000–2050. Ecological Indicators, 67, 328-337. doi:10.1016/j.ecolind.2016.03.004

Caen, A., Latour, D., & Mathias, J. D. (2019). Dynamical effects of retention structures on the mitigation of lake eutrophication. Environmental Modelling & Software, 119, 309-326. doi:10.1016/j.envsoft.2019.06.012

Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831-849. doi:10.1016/j.envint.2006.05.002

Canto-Perello, J., Martinez-Leon, J., Curiel-Esparza, J., & Martin-Utrillas, M. (2017). Consensus in prioritizing river rehabilitation projects through the integration of social, economic and landscape indicators. Ecological Indicators, 72, 659-666. doi:10.1016/j.ecolind.2016.09.004

Canto-Perello, J., Morera-Escrich, J. L., Martin-Utrillas, M., & Curiel-Esparza, J. (2018). Restoration prioritization framework for roadway high cut slopes to reverse land degradation and fragmentation. Land Use Policy, 71, 470-479. doi:10.1016/j.landusepol.2017.11.020

Cirujano, S., Casado, C., Bernués, M., & Camargo, J. A. (1996). Ecological study of Las Tablas de Daimiel National Park (Ciudad Real, central Spain): Differences in water physico-chemistry and vegetation between 1974 and 1989. Biological Conservation, 75(3), 211-215. doi:10.1016/0006-3207(95)00079-8

Curiel-Esparza, J., Gonzalez-Utrillas, N., Canto-Perello, J., & Martin-Utrillas, M. (2015). Integrating climate change criteria in reforestation projects using a hybrid decision-support system. Environmental Research Letters, 10(9), 094022. doi:10.1088/1748-9326/10/9/094022

Curiel-Esparza, J., Mazario-Diez, J. L., Canto-Perello, J., & Martin-Utrillas, M. (2016). Prioritization by consensus of enhancements for sustainable mobility in urban areas. Environmental Science & Policy, 55, 248-257. doi:10.1016/j.envsci.2015.10.015

Curiel-Esparza, J., Reyes-Medina, M., Martin-Utrillas, M., Martinez-Garcia, M. P., & Canto-Perello, J. (2019). Collaborative elicitation to select a sustainable biogas desulfurization technique for landfills. Journal of Cleaner Production, 212, 1334-1344. doi:10.1016/j.jclepro.2018.12.095

Dong, Y., Zhang, G., Hong, W.-C., & Xu, Y. (2010). Consensus models for AHP group decision making under row geometric mean prioritization method. Decision Support Systems, 49(3), 281-289. doi:10.1016/j.dss.2010.03.003

Forman, E., & Peniwati, K. (1998). Aggregating individual judgments and priorities with the analytic hierarchy process. European Journal of Operational Research, 108(1), 165-169. doi:10.1016/s0377-2217(97)00244-0

Gu, S., Gruau, G., Dupas, R., Petitjean, P., Li, Q., & Pinay, G. (2019). Respective roles of Fe-oxyhydroxide dissolution, pH changes and sediment inputs in dissolved phosphorus release from wetland soils under anoxic conditions. Geoderma, 338, 365-374. doi:10.1016/j.geoderma.2018.12.034

Haas, M. B., Guse, B., & Fohrer, N. (2017). Assessing the impacts of Best Management Practices on nitrate pollution in an agricultural dominated lowland catchment considering environmental protection versus economic development. Journal of Environmental Management, 196, 347-364. doi:10.1016/j.jenvman.2017.02.060

Thi Minh Hanh, P., Sthiannopkao, S., The Ba, D., & Kim, K.-W. (2011). Development of Water Quality Indexes to Identify Pollutants in Vietnam’s Surface Water. Journal of Environmental Engineering, 137(4), 273-283. doi:10.1061/(asce)ee.1943-7870.0000314

Hes, E. M., & van Dam, A. A. (2019). Modelling nitrogen and phosphorus cycling and retention in Cyperus papyrus dominated natural wetlands. Environmental Modelling & Software, 122, 104531. doi:10.1016/j.envsoft.2019.104531

Juston, J. M., & Kadlec, R. H. (2019). Data-driven modeling of phosphorus (P) dynamics in low-P stormwater wetlands. Environmental Modelling & Software, 118, 226-240. doi:10.1016/j.envsoft.2019.05.002

Juwana, I., Muttil, N., & Perera, B. J. C. (2012). Indicator-based water sustainability assessment — A review. Science of The Total Environment, 438, 357-371. doi:10.1016/j.scitotenv.2012.08.093

Kløve, B., Allan, A., Bertrand, G., Druzynska, E., Ertürk, A., Goldscheider, N., … Schipper, P. (2011). Groundwater dependent ecosystems. Part II. Ecosystem services and management in Europe under risk of climate change and land use intensification. Environmental Science & Policy, 14(7), 782-793. doi:10.1016/j.envsci.2011.04.005

Koskiaho, J., & Puustinen, M. (2019). Suspended solids and nutrient retention in two constructed wetlands as determined from continuous data recorded with sensors. Ecological Engineering, 137, 65-75. doi:10.1016/j.ecoleng.2019.04.006

Lefebvre, G., Redmond, L., Germain, C., Palazzi, E., Terzago, S., Willm, L., & Poulin, B. (2019). Predicting the vulnerability of seasonally-flooded wetlands to climate change across the Mediterranean Basin. Science of The Total Environment, 692, 546-555. doi:10.1016/j.scitotenv.2019.07.263

Zhuang, L.-L., Yang, T., Zhang, J., & Li, X. (2019). The configuration, purification effect and mechanism of intensified constructed wetland for wastewater treatment from the aspect of nitrogen removal: A review. Bioresource Technology, 293, 122086. doi:10.1016/j.biortech.2019.122086

Liu, Z., Tai, P., Li, X., Kong, L., Matthews, T. G., Lester, R. E., & Mondon, J. A. (2019). Deriving site-specific water quality criteria for ammonia from national versus international toxicity data. Ecotoxicology and Environmental Safety, 171, 665-676. doi:10.1016/j.ecoenv.2018.12.078

Lobanova, A., Liersch, S., Tàbara, J. D., Koch, H., Hattermann, F. F., & Krysanova, V. (2017). Harmonizing human-hydrological system under climate change: A scenario-based approach for the case of the headwaters of the Tagus River. Journal of Hydrology, 548, 436-447. doi:10.1016/j.jhydrol.2017.03.015

Martin-Utrillas, M., Reyes-Medina, M., Curiel-Esparza, J., & Canto-Perello, J. (2014). Hybrid method for selection of the optimal process of leachate treatment in waste treatment and valorization plants or landfills. Clean Technologies and Environmental Policy, 17(4), 873-885. doi:10.1007/s10098-014-0834-4

Man, Y., Hu, Y., & Ren, J. (2019). Forecasting COD load in municipal sewage based on ARMA and VAR algorithms. Resources, Conservation and Recycling, 144, 56-64. doi:10.1016/j.resconrec.2019.01.030

Martinez-Martinez, E., Nejadhashemi, A. P., Woznicki, S. A., Adhikari, U., & Giri, S. (2015). Assessing the significance of wetland restoration scenarios on sediment mitigation plan. Ecological Engineering, 77, 103-113. doi:10.1016/j.ecoleng.2014.11.031

Mayo, A. W., Muraza, M., & Norbert, J. (2018). Modelling nitrogen transformation and removal in mara river basin wetlands upstream of lake Victoria. Physics and Chemistry of the Earth, Parts A/B/C, 105, 136-146. doi:10.1016/j.pce.2018.03.005

Moreno, L., Jiménez, M.-E., Aguilera, H., Jiménez, P., & de la Losa, A. (2010). The 2009 Smouldering Peat Fire in Las Tablas de Daimiel National Park (Spain). Fire Technology, 47(2), 519-538. doi:10.1007/s10694-010-0172-y

Nagisetty, R. M., Flynn, K. F., & Uecker, D. (2019). Dissolved oxygen modeling of effluent-dominated macrophyte-rich Silver Bow Creek. Ecological Modelling, 393, 85-97. doi:10.1016/j.ecolmodel.2018.12.009

Navarro, V., García, B., Sánchez, D., & Asensio, L. (2011). An evaluation of the application of treated sewage effluents in Las Tablas de Daimiel National Park, Central Spain. Journal of Hydrology, 401(1-2), 53-64. doi:10.1016/j.jhydrol.2011.02.008

Norouzian-Maleki, S., Bell, S., Hosseini, S.-B., & Faizi, M. (2015). Developing and testing a framework for the assessment of neighbourhood liveability in two contrasting countries: Iran and Estonia. Ecological Indicators, 48, 263-271. doi:10.1016/j.ecolind.2014.07.033

Novakowski, N., & Wellar, B. (2008). Using the Delphi Technique in Normative Planning Research: Methodological Design Considerations. Environment and Planning A: Economy and Space, 40(6), 1485-1500. doi:10.1068/a39267

Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information & Management, 42(1), 15-29. doi:10.1016/j.im.2003.11.002

O’Neil, G. L., Goodall, J. L., Behl, M., & Saby, L. (2020). Deep learning Using Physically-Informed Input Data for Wetland Identification. Environmental Modelling & Software, 126, 104665. doi:10.1016/j.envsoft.2020.104665

Pérez-Martín, M. A., Estrela, T., & del-Amo, P. (2016). Measures required to reach the nitrate objectives in groundwater based on a long-term nitrate model for large river basins (Júcar, Spain). Science of The Total Environment, 566-567, 122-133. doi:10.1016/j.scitotenv.2016.04.206

Pottinger, T. G. (2017). Modulation of the stress response in wild fish is associated with variation in dissolved nitrate and nitrite. Environmental Pollution, 225, 550-558. doi:10.1016/j.envpol.2017.03.021

Prăvălie, R., Patriche, C., & Bandoc, G. (2017). Quantification of land degradation sensitivity areas in Southern and Central Southeastern Europe. New results based on improving DISMED methodology with new climate data. CATENA, 158, 309-320. doi:10.1016/j.catena.2017.07.006

Restuccia, F., Huang, X., & Rein, G. (2017). Self-ignition of natural fuels: Can wildfires of carbon-rich soil start by self-heating? Fire Safety Journal, 91, 828-834. doi:10.1016/j.firesaf.2017.03.052

Rivers-Moore, N. A., Dallas, H. F., & Morris, C. (2013). Towards setting environmental water temperature guidelines: A South African example. Journal of Environmental Management, 128, 380-392. doi:10.1016/j.jenvman.2013.04.059

Rusydi, A. F. (2018). Correlation between conductivity and total dissolved solid in various type of water: A review. IOP Conference Series: Earth and Environmental Science, 118, 012019. doi:10.1088/1755-1315/118/1/012019

Sánchez-Montoya, M. del M., Arce, M. I., Vidal-Abarca, M. R., Suárez, M. L., Prat, N., & Gómez, R. (2012). Establishing physico-chemical reference conditions in Mediterranean streams according to the European Water Framework Directive. Water Research, 46(7), 2257-2269. doi:10.1016/j.watres.2012.01.042

Sanchez-Ramos, D., Sánchez-Emeterio, G., & Florín Beltrán, M. (2015). Changes in water quality of treated sewage effluents by their receiving environments in Tablas de Daimiel National Park, Spain. Environmental Science and Pollution Research, 23(7), 6082-6090. doi:10.1007/s11356-015-4660-y

Sapriza-Azuri, G., Jódar, J., Carrera, J., & Gupta, H. V. (2015). Toward a comprehensive assessment of the combined impacts of climate change and groundwater pumping on catchment dynamics. Journal of Hydrology, 529, 1701-1712. doi:10.1016/j.jhydrol.2015.08.015

Singh, S., Ghosh, N. C., Krishan, G., Galkate, R., Thomas, T., & Jaiswal, R. K. (2015). Development of an Overall Water Quality Index (OWQI) for Surface Water in Indian Context. Current World Environment, 10(3), 813-822. doi:10.12944/cwe.10.3.12

Singh, S., Ghosh, N. C., Gurjar, S., Krishan, G., Kumar, S., & Berwal, P. (2017). Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environmental Monitoring and Assessment, 190(1). doi:10.1007/s10661-017-6407-3

Sperotto, A., Molina, J. L., Torresan, S., Critto, A., Pulido-Velazquez, M., & Marcomini, A. (2019). A Bayesian Networks approach for the assessment of climate change impacts on nutrients loading. Environmental Science & Policy, 100, 21-36. doi:10.1016/j.envsci.2019.06.004

Sun, B., Tang, J., Yu, D., Song, Z., & Wang, P. (2019). Ecosystem health assessment: A PSR analysis combining AHP and FCE methods for Jiaozhou Bay, China1. Ocean & Coastal Management, 168, 41-50. doi:10.1016/j.ocecoaman.2018.10.026

Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2015). Development of river water quality indices—a review. Environmental Monitoring and Assessment, 188(1). doi:10.1007/s10661-015-5050-0

Sutadian, A. D., Muttil, N., Yilmaz, A. G., & Perera, B. J. C. (2017). Using the Analytic Hierarchy Process to identify parameter weights for developing a water quality index. Ecological Indicators, 75, 220-233. doi:10.1016/j.ecolind.2016.12.043

Tooth, S. (2018). The geomorphology of wetlands in drylands: Resilience, nonresilience, or …? Geomorphology, 305, 33-48. doi:10.1016/j.geomorph.2017.10.017

Tyagi, S., Sharma, B., Singh, P., & Dobhal, R. (2020). Water Quality Assessment in Terms of Water Quality Index. American Journal of Water Resources, 1(3), 34-38. doi:10.12691/ajwr-1-3-3

Viaroli, S., Mastrorillo, L., Lotti, F., Paolucci, V., & Mazza, R. (2018). The groundwater budget: A tool for preliminary estimation of the hydraulic connection between neighboring aquifers. Journal of Hydrology, 556, 72-86. doi:10.1016/j.jhydrol.2017.10.066

Wang, H.-J., Xiao, X.-C., Wang, H.-Z., Li, Y., Yu, Q., Liang, X.-M., … Jeppesen, E. (2017). Effects of high ammonia concentrations on three cyprinid fish: Acute and whole-ecosystem chronic tests. Science of The Total Environment, 598, 900-909. doi:10.1016/j.scitotenv.2017.04.070

Xu, Y., Wang, Y., Li, S., Huang, G., & Dai, C. (2018). Stochastic optimization model for water allocation on a watershed scale considering wetland’s ecological water requirement. Ecological Indicators, 92, 330-341. doi:10.1016/j.ecolind.2017.02.019

Yuan, L., Ge, Z., Fan, X., & Zhang, L. (2014). Ecosystem-based coastal zone management: A comprehensive assessment of coastal ecosystems in the Yangtze Estuary coastal zone. Ocean & Coastal Management, 95, 63-71. doi:10.1016/j.ocecoaman.2014.04.005

Zhang, R., Zhang, X., Yang, J., & Yuan, H. (2013). Wetland ecosystem stability evaluation by using Analytical Hierarchy Process (AHP) approach in Yinchuan Plain, China. Mathematical and Computer Modelling, 57(3-4), 366-374. doi:10.1016/j.mcm.2012.06.014

ZHANG, L. (2016). CALCULATION OF WETLANDS ECOLOGICAL WATER REQUIREMENT IN CHINA’S WESTERN JILIN PROVINCE BASED ON REGIONALIZATION AND GRADATION TECHNIQUES. Applied Ecology and Environmental Research, 14(3), 463-478. doi:10.15666/aeer/1403_463478

Zhang, B., Zhao, D., Zhou, P., Qu, S., Liao, F., & Wang, G. (2020). Hydrochemical Characteristics of Groundwater and Dominant Water–Rock Interactions in the Delingha Area, Qaidam Basin, Northwest China. Water, 12(3), 836. doi:10.3390/w12030836

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem