- -

Air quality and urban sustainable development: the application of machine learning tools

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Air quality and urban sustainable development: the application of machine learning tools

Mostrar el registro completo del ítem

Molina-Gómez, NI.; Díaz-Arévalo, JL.; López Jiménez, PA. (2021). Air quality and urban sustainable development: the application of machine learning tools. International Journal of Environmental Science and Technology. 18(4):1-18. https://doi.org/10.1007/s13762-020-02896-6

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164064

Ficheros en el ítem

Metadatos del ítem

Título: Air quality and urban sustainable development: the application of machine learning tools
Autor: Molina-Gómez, N. I. Díaz-Arévalo, J. L. López Jiménez, Petra Amparo
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Hidráulica y Medio Ambiente - Departament d'Enginyeria Hidràulica i Medi Ambient
Fecha difusión:
Resumen:
[EN] Air quality has an efect on a population¿s quality of life. As a dimension of sustainable urban development, governments have been concerned about this indicator. This is refected in the references consulted that have ...[+]
Palabras clave: Air pollution , Sustainability , Forecasting , Sustainable development goals , Infuencing variables
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal of Environmental Science and Technology. (issn: 1735-1472 )
DOI: 10.1007/s13762-020-02896-6
Editorial:
Springer-Verlag
Versión del editor: https://doi.org/10.1007/s13762-020-02896-6
Tipo: Artículo

References

Al-Dabbous A, Kumar P, Khan A (2017) Prediction of airborne nanoparticles at roadside location using a feed–forward artificial neural network. Atmos Pollut Res 8:446–454. https://doi.org/10.1016/j.apr.2016.11.004

Antanasijević D, Pocajt V, Povrenović D, Ristić M, Perić-Grujić A (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519. https://doi.org/10.1016/j.scitotenv.2012.10.110

Brink H, Richards JW, Fetherolf M (2016) Real-world machine learning. Richards JW, Fetherolf M (eds) Manning Publications Co. Berkeley, CA. https://www.manning.com/books/real-world-machine-learning. Accessed 26 Apr 2020 [+]
Al-Dabbous A, Kumar P, Khan A (2017) Prediction of airborne nanoparticles at roadside location using a feed–forward artificial neural network. Atmos Pollut Res 8:446–454. https://doi.org/10.1016/j.apr.2016.11.004

Antanasijević D, Pocajt V, Povrenović D, Ristić M, Perić-Grujić A (2013) PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci Total Environ 443:511–519. https://doi.org/10.1016/j.scitotenv.2012.10.110

Brink H, Richards JW, Fetherolf M (2016) Real-world machine learning. Richards JW, Fetherolf M (eds) Manning Publications Co. Berkeley, CA. https://www.manning.com/books/real-world-machine-learning. Accessed 26 Apr 2020

Cervone G, Franzese P, Ezber Y, Boybeyi Z (2008) Risk assessment of atmospheric emissions using machine learning. Nat Hazard Earth Syst 8:991–1000. https://doi.org/10.5194/nhess-8-991-2008

Chen S, Kan G, Li J, Liang K, Hong Y (2018) Investigating China’s urban air quality using big data, information theory, and machine learning. Pol J Environ Stud 27:565–578. https://doi.org/10.15244/pjoes/75159

Corani (2005) Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecol Model 185:513–529. https://doi.org/10.1016/j.ecolmodel.2005.01.008

Cruz C, Gómez A, Ramírez L, Villalva A, Monge O, Varela J, Quiroz J, Duarte H (2017) Calidad del aire respecto de metales (Pb, Cd, Ni, Cu, Cr) y relación con salud respiratoria: caso Sonora, México. Rev Int Contam Ambient 33:23–34. https://doi.org/10.20937/RICA.2017.33.esp02.02

de Hoogh K, Héritier H, Stafoggia M, Künzli N, Kloog I (2018) Modelling daily PM2.5 concentrations at high spatio-temporal resolution across Switzerland. Environ Pollut 233:1147–1154. https://doi.org/10.1016/j.envpol.2017.10.025

Franceschi F, Cobo M, Figueredo M (2018) Discovering relationships and forecasting PM10 and PM2.5 concentrations in Bogotá, Colombia, using Artificial Neural Networks, Principal Component Analysis, and k-means clustering. Atmos Pollut Res 9:912–922. https://doi.org/10.1016/j.apr.2018.02.006

García N, Combarro E, del Coz J, Montañes E (2013) A SVM-based regression model to study the air quality at local scale in Oviedo urban area (Northern Spain): a case study. Appl Math Comput 219:8923–8937. https://doi.org/10.1016/j.amc.2013.03.018

Gibert K, Sànchez-Màrre M, Sevilla B (2012) Tools for environmental data mining and intelligent decision support. In iEMSs. Leipzig, Germany. http://www.iemss.org/society/index.php/iemss-2012-proceedings. Accessed 26 Nov 2018

Gibert K, Sànchez-Marrè M, Izquierdo J (2016) A survey on pre-processing techniques: relevant issues in the context of environmental data mining. Ai Commun 29:627–663. https://doi.org/10.3233/AIC-160710

Gounaridis D, Chorianopoulos I, Koukoulas S (2018) Exploring prospective urban growth trends under different economic outlooks and land-use planning scenarios: the case of Athens. Appl Geogr 90:134–144. https://doi.org/10.1016/j.apgeog.2017.12.001

Holloway J, Mengersen K (2018) Statistical machine learning methods and remote sensing for sustainable development goals: a review. Remote Sens 10:1–21. https://doi.org/10.3390/rs10091365

Ifaei P, Karbassi A, Lee S, Yoo Ch (2017) A renewable energies-assisted sustainable development plan for Iran using techno-econo-socio-environmental multivariate analysis and big data. Energy Convers Manag 153:257–277. https://doi.org/10.1016/j.enconman.2017.10.014

Kadiyala A, Kumar A (2017a) Applications of R to evaluate environmental data science problems. Environ Prog Sustain 36:1358–1364. https://doi.org/10.1002/ep.12676

Kadiyala A, Kumar A (2017b) Vector time series-based radial basis function neural network modeling of air quality inside a public transportation bus using available software. Environ Prog Sustain 36:4–10. https://doi.org/10.1002/ep.12523

Karimian H, Li Q, Wu Ch, Qi Y, Mo Y, Chen G, Zhang X, Sachdeva S (2019) Evaluation of different machine learning approaches to forecasting PM2.5 mass concentrations. Aerosol Air Qual Res 19:1400–1410. https://doi.org/10.4209/aaqr.2018.12.0450

Krzyzanowski M, Apte J, Bonjour S, Brauer M, Cohen A, Prüss-Ustun A (2014) Air pollution in the mega-cities. Curr Environ Health Rep 1:185–191. https://doi.org/10.1007/s40572-014-0019-7

Lässig K, Morik (2016) Computat sustainability. Springer, Berlin. https://doi.org/10.1007/978-3-319-31858-5

Li Y, Wu Y-X, Zeng Z-X, Guo L (2006) Research on forecast model for sustainable development of economy-environment system based on PCA and SVM. In: Proceedings of the 2006 international conference on machine learning and cybernetics, vol 2006. IEEE, Dalian, China, pp 3590–3593. https://doi.org/10.1109/ICMLC.2006.258576

Liu B-Ch, Binaykia A, Chang P-Ch, Tiwari M, Tsao Ch-Ch (2017) Urban air quality forecasting based on multi- dimensional collaborative support vector regression (SVR): a case study of Beijing-Tianjin-Shijiazhuang. PLoS ONE 12:1–17. https://doi.org/10.1371/journal.pone.0179763

Lubell M, Feiock R, Handy S (2009) City adoption of environmentally sustainable policies in California’s Central Valley. J Am Plan Assoc 75:293–308. https://doi.org/10.1080/01944360902952295

Ma D, Zhang Z (2016) Contaminant dispersion prediction and source estimation with integrated Gaussian-machine learning network model for point source emission in atmosphere. J Hazard Mater 311:237–245. https://doi.org/10.1016/j.jhazmat.2016.03.022

Madu C, Kuei N, Lee P (2017) Urban sustainability management: a deep learning perspective. Sustain Cities Soc 30:1–17. https://doi.org/10.1016/j.scs.2016.12.012

Mellos K (1988) Theory of eco-development. In: Perspectives on ecology. Palgrave Macmillan, London. https://doi.org/10.1007/978-1-349-19598-5_4

Ni XY, Huang H, Du WP (2017) Relevance analysis and short-term prediction of PM2.5 concentrations in Beijing based on multi-source data. Atmos Environ 150:146–161. https://doi.org/10.1016/j.atmosenv.2016.11.054

Oprea M, Dragomir E, Popescu M, Mihalache S (2016) Particulate matter air pollutants forecasting using inductive learning approach. Rev Chim 67:2075–2081

Paas B, Stienen J, Vorländer M, Schneider Ch (2017) Modelling of urban near-road atmospheric PM concentrations using an artificial neural network approach with acoustic data input. Environments 4:1–25. https://doi.org/10.3390/environments4020026

Pandey G, Zhang B, Jian L (2013) Predicting submicron air pollution indicators: a machine learning approach. Environ Sci Proc Impacts 15:996–1005. https://doi.org/10.1039/c3em30890a

Peng H, Lima A, Teakles A, Jin J, Cannon A, Hsieh W (2017) Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Qual Atmos Health 10:195–211. https://doi.org/10.1007/s11869-016-0414-3

Pérez-Ortíz M, de La Paz-Marín M, Gutiérrez PA, Hervás-Martínez C (2014) Classification of EU countries’ progress towards sustainable development based on ordinal regression techniques. Knowl Based Syst 66:178–189. https://doi.org/10.1016/j.knosys.2014.04.041

Phillis Y, Kouikoglou V, Verdugo C (2017) Urban sustainability assessment and ranking of cities. Comput Environ Urban 64:254–265. https://doi.org/10.1016/j.compenvurbsys.2017.03.002

Saeed S, Hussain L, Awan I, Idris A (2017) Comparative analysis of different statistical methods for prediction of PM2.5 and PM10 concentrations in advance for several hours. Int J Comput Sci Netw Secur 17:45–52

Sayegh A, Munir S, Habeebullah T (2014) Comparing the performance of statistical models for predicting PM10 concentrations. Aerosol Air Qual Res 14:653–665. https://doi.org/10.4209/aaqr.2013.07.0259

Shaban K, Kadri A, Rezk E (2016) Urban air pollution monitoring system with forecasting models. IEEE Sens J 16:2598–2606. https://doi.org/10.1109/JSEN.2016.2514378

Sierra B (2006) Aprendizaje automático conceptos básicos y avanzados Aspectos prácticos utilizando el software Weka. Madrid Pearson Prentice Hall, Madrid

Singh K, Gupta S, Rai P (2013) Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos Environ 80:426–437. https://doi.org/10.1016/j.atmosenv.2013.08.023

Song L, Pang S, Longley I, Olivares G, Sarrafzadeh A (2014) Spatio-temporal PM2.5 prediction by spatial data aided incremental support vector regression. In: International joint conference on neural networks. IEEE, Beijing, pp 623–630. https://doi.org/10.1109/IJCNN.2014.6889521

Souza R, Coelho G, da Silva A, Pozza S (2015) Using ensembles of artificial neural networks to improve PM10 forecasts. Chem Eng Trans 43:2161–2166. https://doi.org/10.3303/CET1543361

Suárez A, García PJ, Riesgo P, del Coz JJ, Iglesias-Rodríguez FJ (2011) Application of an SVM-based regression model to the air quality study at local scale in the Avilés urban area (Spain). Math Comput Model 54:453–1466. https://doi.org/10.1016/j.mcm.2011.04.017

Tamas W, Notton G, Paoli C, Nivet M, Voyant C (2016) Hybridization of air quality forecasting models using machine learning and clustering: an original approach to detect pollutant peaks. Aerosol Air Qual Res 16:405–416. https://doi.org/10.4209/aaqr.2015.03.0193

Toumi O, Le Gallo J, Ben Rejeb J (2017) Assessment of Latin American sustainability. Renew Sustain Energy Rev 78:878–885. https://doi.org/10.1016/j.rser.2017.05.013

Tzima F, Mitkas P, Voukantsis D, Karatzas K (2011) Sparse episode identification in environmental datasets: the case of air quality assessment. Expert Syst Appl 38:5019–5027. https://doi.org/10.1016/j.eswa.2010.09.148

United Nations, Department of Economic and Social Affairs (2019) World urbanization prospects The 2018 Revision. New York. https://doi.org/10.18356/b9e995fe-en

Wang B (2019) Applying machine-learning methods based on causality analysis to determine air quality in China. Pol J Environ Stud 28:3877–3885. https://doi.org/10.15244/pjoes/99639

Wang X, Xiao Z (2017) Regional eco-efficiency prediction with support vector spatial dynamic MIDAS. J Clean Prod 161:165–177. https://doi.org/10.1016/j.jclepro.2017.05.077

Wang W, Men C, Lu W (2008) Online prediction model based on support vector machine. Neurocomputing 71:550–558. https://doi.org/10.1016/j.neucom.2007.07.020

WCED (1987) Report of the world commission on environment and development: our common future: report of the world commission on environment and development. WCED, Oslo. https://doi.org/10.1080/07488008808408783

Weizhen H, Zhengqiang L, Yuhuan Z, Hua X, Ying Z, Kaitao L, Donghui L, Peng W, Yan M (2014) Using support vector regression to predict PM10 and PM2.5. In: IOP conference series: earth and environmental science, vol 17. IOP. https://doi.org/10.1088/1755-1315/17/1/012268

WHO (2016) OMS | La OMS publica estimaciones nacionales sobre la exposición a la contaminación del aire y sus repercusiones para la salud. WHO. http://www.who.int/mediacentre/news/releases/2016/air-pollution-estimates/es/. Accesed 26 Nov 2018

Yeganeh N, Shafie MP, Rashidi Y, Kamalan H (2012) Prediction of CO concentrations based on a hybrid partial least square and support vector machine model. Atmos Environ 55:357–365. https://doi.org/10.1016/j.atmosenv.2012.02.092

Zalakeviciute R, Bastidas M, Buenaño A, Rybarczyk Y (2020) A traffic-based method to predict and map urban air quality. Appl Sci. https://doi.org/10.3390/app10062035

Zeng L, Guo J, Wang B, Lv J, Wang Q (2019) Analyzing sustainability of Chinese coal cities using a decision tree modeling approach. Resour Policy 64:101501. https://doi.org/10.1016/j.resourpol.2019.101501

Zhan Y, Luo Y, Deng X, Grieneisen M, Zhang M, Di B (2018) Spatiotemporal prediction of daily ambient ozone levels across China using random forest for human exposure assessment. Environ Pollut 233:464–473. https://doi.org/10.1016/j.envpol.2017.10.029

Zhang Y, Huan Q (2006) Research on the evaluation of sustainable development in Cangzhou city based on neural-network-AHP. In: Proceedings of the fifth international conference on machine learning and cybernetics, vol 2006. pp 3144–3147. https://doi.org/10.1109/ICMLC.2006.258407

Zhang Y, Shang W, Wu Y (2009) Research on sustainable development based on neural network. In: 2009 Chinese control and decision conference. IEEE, pp 3273–3276. https://doi.org/10.1109/CCDC.2009.5192476

Zhou Y, Chang F-J, Chang L-Ch, Kao I-F, Wang YS (2019) Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J Clean Prod 209:134–145. https://doi.org/10.1016/j.jclepro.2018.10.243

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem