- -

Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction

Show full item record

López-Hernández, I.; García Yago, CI.; Truttmann, V.; Pollit, S.; Barrabés, N.; Rupprechter, G.; Rey Garcia, F.... (2020). Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction. Catalysis Today. 345:22-26. https://doi.org/10.1016/j.cattod.2019.12.001

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164162

Files in this item

Item Metadata

Title: Evaluation of the silver species nature in Ag-ITQ2 zeolites by the CO oxidation reaction
Author: López-Hernández, Irene GARCÍA YAGO, CLARA ISABEL Truttmann, V. Pollit, S. Barrabés, N. Rupprechter, G. Rey Garcia, Fernando Palomares Gimeno, Antonio Eduardo
UPV Unit: Universitat Politècnica de València. Departamento de Ingeniería Química y Nuclear - Departament d'Enginyeria Química i Nuclear
Issued date:
Subjects: CO oxidation , Silver nanoclusters , Silver species , Silver zeolites , Test reaction
Copyrigths: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Source:
Catalysis Today. (issn: 0920-5861 )
DOI: 10.1016/j.cattod.2019.12.001
Publisher:
Elsevier
Publisher version: https://doi.org/10.1016/j.cattod.2019.12.001
Conference name: 8th Czech-Italian-Spanish Conference on Molecular Sieves and Catalysis (CIS8)
Conference place: Amantea, Italy
Conference date: Junio 11-14,2019
Project ID:
info:eu-repo/grantAgreement/FWF//W 1243/AT/Building Solids for Function/
info:eu-repo/grantAgreement/FWF//I 1041/AT/Cobalt Oxide Model Catalysis Across the Materials & Pressure Gap/
info:eu-repo/grantAgreement/GVA//ACIF%2F2017%2F079/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101784-B-I00/ES/NUEVOS MATERIALES ZEOLITICOS PARA PROCESOS DE SEPARACION SELECTIVA DE GASES, APLICACIONES MEDIOAMBIENTALES Y CONSERVACION DE ALIMENTOS/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
Thanks:
The authors thank the Spanish Ministry of Economy and Competitiveness through RTI2018-101784-B-I00 (MINECO/FEDER) and SEV-2016-0683 projects for the financial support. We gratefully acknowledge ALBA synchrotron for allocating ...[+]
Type: Artículo Comunicación en congreso

References

Serhan, N., Tsolakis, A., Wahbi, A., Martos, F. J., & Golunski, S. (2019). Modifying catalytically the soot morphology and nanostructure in diesel exhaust: Influence of silver De-NOx catalyst (Ag/Al2O3). Applied Catalysis B: Environmental, 241, 471-482. doi:10.1016/j.apcatb.2018.09.068

Góra-Marek, K., Tarach, K. A., Piwowarska, Z., Łaniecki, M., & Chmielarz, L. (2016). Ag-loaded zeolites Y and USY as catalysts for selective ammonia oxidation. Catalysis Science & Technology, 6(6), 1651-1660. doi:10.1039/c5cy01446h

Hu, X., Bai, J., Hong, H., & Li, C. (2016). Supercritical carbon dioxide anchored highly dispersed silver nanoparticles on 4A-zeolite and selective oxidation of styrene performance. CrystEngComm, 18(14), 2469-2476. doi:10.1039/c5ce02435h [+]
Serhan, N., Tsolakis, A., Wahbi, A., Martos, F. J., & Golunski, S. (2019). Modifying catalytically the soot morphology and nanostructure in diesel exhaust: Influence of silver De-NOx catalyst (Ag/Al2O3). Applied Catalysis B: Environmental, 241, 471-482. doi:10.1016/j.apcatb.2018.09.068

Góra-Marek, K., Tarach, K. A., Piwowarska, Z., Łaniecki, M., & Chmielarz, L. (2016). Ag-loaded zeolites Y and USY as catalysts for selective ammonia oxidation. Catalysis Science & Technology, 6(6), 1651-1660. doi:10.1039/c5cy01446h

Hu, X., Bai, J., Hong, H., & Li, C. (2016). Supercritical carbon dioxide anchored highly dispersed silver nanoparticles on 4A-zeolite and selective oxidation of styrene performance. CrystEngComm, 18(14), 2469-2476. doi:10.1039/c5ce02435h

Cerrillo, J. L., Palomares, A. E., Rey, F., Valencia, S., Pérez-Gago, M. B., Villamón, D., & Palou, L. (2018). Functional Ag-Exchanged Zeolites as Biocide Agents. ChemistrySelect, 3(17), 4676-4682. doi:10.1002/slct.201800432

Dong, X.-Y., Gao, Z.-W., Yang, K.-F., Zhang, W.-Q., & Xu, L.-W. (2015). Nanosilver as a new generation of silver catalysts in organic transformations for efficient synthesis of fine chemicals. Catalysis Science & Technology, 5(5), 2554-2574. doi:10.1039/c5cy00285k

Sulaiman, K. O., Sudheeshkumar, V., & Scott, R. W. J. (2019). Activation of atomically precise silver clusters on carbon supports for styrene oxidation reactions. RSC Advances, 9(48), 28019-28027. doi:10.1039/c9ra05566e

Coutiño-Gonzalez, E., Baekelant, W., Steele, J. A., Kim, C. W., Roeffaers, M. B. J., & Hofkens, J. (2017). Silver Clusters in Zeolites: From Self-Assembly to Ground-Breaking Luminescent Properties. Accounts of Chemical Research, 50(9), 2353-2361. doi:10.1021/acs.accounts.7b00295

Liu, L., & Corma, A. (2018). Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chemical Reviews, 118(10), 4981-5079. doi:10.1021/acs.chemrev.7b00776

Zhao, J., & Jin, R. (2018). Heterogeneous catalysis by gold and gold-based bimetal nanoclusters. Nano Today, 18, 86-102. doi:10.1016/j.nantod.2017.12.009

Zhang, B., Kaziz, S., Li, H., Hevia, M. G., Wodka, D., Mazet, C., … Barrabés, N. (2015). Modulation of Active Sites in Supported Au38(SC2H4Ph)24 Cluster Catalysts: Effect of Atmosphere and Support Material. The Journal of Physical Chemistry C, 119(20), 11193-11199. doi:10.1021/jp512022v

Zhang, B., Sels, A., Salassa, G., Pollitt, S., Truttmann, V., Rameshan, C., … Barrabés, N. (2018). Ligand Migration from Cluster to Support: A Crucial Factor for Catalysis by Thiolate‐protected Gold Clusters. ChemCatChem, 10(23), 5372-5376. doi:10.1002/cctc.201801474

Natarajan, G., Mathew, A., Negishi, Y., Whetten, R. L., & Pradeep, T. (2015). A Unified Framework for Understanding the Structure and Modifications of Atomically Precise Monolayer Protected Gold Clusters. The Journal of Physical Chemistry C, 119(49), 27768-27785. doi:10.1021/acs.jpcc.5b08193

Tsukuda, T., & Häkkinen, H. (2015). Introduction. Protected Metal Clusters - From Fundamentals to Applications, 1-7. doi:10.1016/b978-0-08-100086-1.00001-4

Zhang, X., Qu, Z., Li, X., Wen, M., Quan, X., Ma, D., & Wu, J. (2010). Studies of silver species for low-temperature CO oxidation on Ag/SiO2 catalysts. Separation and Purification Technology, 72(3), 395-400. doi:10.1016/j.seppur.2010.03.012

Kolobova, E., Pestryakov, A., Mamontov, G., Kotolevich, Y., Bogdanchikova, N., Farias, M., … Cortes Corberan, V. (2017). Low-temperature CO oxidation on Ag/ZSM-5 catalysts: Influence of Si/Al ratio and redox pretreatments on formation of silver active sites. Fuel, 188, 121-131. doi:10.1016/j.fuel.2016.10.037

Ausavasukhi, A., Suwannaran, S., Limtrakul, J., & Sooknoi, T. (2008). Reversible interconversion behavior of Ag species in AgHZSM-5: XRD, 1H MAS NMR, TPR, TPHE, and catalytic studies. Applied Catalysis A: General, 345(1), 89-96. doi:10.1016/j.apcata.2008.04.026

Shi, C., Cheng, M., Qu, Z., & Bao, X. (2005). On the correlation between microstructural changes of Ag-H-ZSM-5 catalysts and their catalytic performances in the selective catalytic reduction of NOx by methane. Journal of Molecular Catalysis A: Chemical, 235(1-2), 35-43. doi:10.1016/j.molcata.2004.10.045

Afanasev, D. S., Yakovina, O. A., Kuznetsova, N. I., & Lisitsyn, A. S. (2012). High activity in CO oxidation of Ag nanoparticles supported on fumed silica. Catalysis Communications, 22, 43-47. doi:10.1016/j.catcom.2012.02.014

Kolobova, E., Pestryakov, A., Shemeryankina, A., Kotolevich, Y., Martynyuk, O., Tiznado Vazquez, H. J., & Bogdanchikova, N. (2014). Formation of silver active states in Ag/ZSM-5 catalysts for CO oxidation. Fuel, 138, 65-71. doi:10.1016/j.fuel.2014.07.011

Royer, S., & Duprez, D. (2010). Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem, 3(1), 24-65. doi:10.1002/cctc.201000378

Soliman, N. K. (2019). Factors affecting CO oxidation reaction over nanosized materials: A review. Journal of Materials Research and Technology, 8(2), 2395-2407. doi:10.1016/j.jmrt.2018.12.012

Du, M., Sun, D., Yang, H., Huang, J., Jing, X., Odoom-Wubah, T., … Li, Q. (2014). Influence of Au Particle Size on Au/TiO2 Catalysts for CO Oxidation. The Journal of Physical Chemistry C, 118(33), 19150-19157. doi:10.1021/jp504681f

Corma, A., Fornés, V., Guil, J. ., Pergher, S., Maesen, T. L. ., & Buglass, J. . (2000). Preparation, characterisation and catalytic activity of ITQ-2, a delaminated zeolite. Microporous and Mesoporous Materials, 38(2-3), 301-309. doi:10.1016/s1387-1811(00)00149-9

Joshi, C. P., Bootharaju, M. S., Alhilaly, M. J., & Bakr, O. M. (2015). [Ag25(SR)18]−: The «Golden» Silver Nanoparticle. Journal of the American Chemical Society, 137(36), 11578-11581. doi:10.1021/jacs.5b07088

Aspromonte, S. G., Mizrahi, M. D., Schneeberger, F. A., López, J. M. R., & Boix, A. V. (2013). Study of the Nature and Location of Silver in Ag-Exchanged Mordenite Catalysts. Characterization by Spectroscopic Techniques. The Journal of Physical Chemistry C, 117(48), 25433-25442. doi:10.1021/jp4046269

Veronesi, G., Deniaud, A., Gallon, T., Jouneau, P.-H., Villanova, J., Delangle, P., … Michaud-Soret, I. (2016). Visualization, quantification and coordination of Ag+ions released from silver nanoparticles in hepatocytes. Nanoscale, 8(38), 17012-17021. doi:10.1039/c6nr04381j

Veronesi, G., Aude-Garcia, C., Kieffer, I., Gallon, T., Delangle, P., Herlin-Boime, N., … Carrière, M. (2015). Exposure-dependent Ag+release from silver nanoparticles and its complexation in AgS2sites in primary murine macrophages. Nanoscale, 7(16), 7323-7330. doi:10.1039/c5nr00353a

Hudson-Smith, N. V., Clement, P. L., Brown, R. P., Krause, M. O. P., Pedersen, J. A., & Haynes, C. L. (2016). Research highlights: speciation and transformations of silver released from Ag NPs in three species. Environmental Science: Nano, 3(6), 1236-1240. doi:10.1039/c6en90025a

Shimizu, K., Sugino, K., Kato, K., Yokota, S., Okumura, K., & Satsuma, A. (2007). Formation and Redispersion of Silver Clusters in Ag-MFI Zeolite as Investigated by Time-Resolved QXAFS and UV−Vis. The Journal of Physical Chemistry C, 111(4), 1683-1688. doi:10.1021/jp066995a

Chen, D., Qu, Z., Shen, S., Li, X., Shi, Y., Wang, Y., … Wu, J. (2011). Comparative studies of silver based catalysts supported on different supports for the oxidation of formaldehyde. Catalysis Today, 175(1), 338-345. doi:10.1016/j.cattod.2011.03.059

Schuricht, F., & Reschetilowski, W. (2012). Simultaneous selective catalytic reduction (SCR) of NOx and N2O over Ag/ZSM-5 – Catalytic studies and mechanistic implications. Microporous and Mesoporous Materials, 164, 135-144. doi:10.1016/j.micromeso.2012.07.018

Akolekar, D. B., & Bhargava, S. K. (2000). Adsorption of NO and CO on silver-exchanged microporous materials. Journal of Molecular Catalysis A: Chemical, 157(1-2), 199-206. doi:10.1016/s1381-1169(00)00055-8

Liu, J., Krishna, K. S., Kumara, C., Chattopadhyay, S., Shibata, T., Dass, A., & Kumar, C. S. S. R. (2016). Understanding Au∼98Ag∼46(SR)60 nanoclusters through investigation of their electronic and local structure by X-ray absorption fine structure. RSC Advances, 6(30), 25368-25374. doi:10.1039/c5ra27396j

Chevrier, D. M., Yang, R., Chatt, A., & Zhang, P. (2015). Bonding properties of thiolate-protected gold nanoclusters and structural analogs from X-ray absorption spectroscopy. Nanotechnology Reviews, 4(2). doi:10.1515/ntrev-2015-0007

Yamazoe, S., & Tsukuda, T. (2019). X-ray Absorption Spectroscopy on Atomically Precise Metal Clusters. Bulletin of the Chemical Society of Japan, 92(1), 193-204. doi:10.1246/bcsj.20180282

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record