- -

Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gala, Alberto es_ES
dc.contributor.author Guerrero, Marta es_ES
dc.contributor.author Guirao, Beatriz es_ES
dc.contributor.author Domine, Marcelo Eduardo es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.date.accessioned 2021-03-24T04:31:33Z
dc.date.available 2021-03-24T04:31:33Z
dc.date.issued 2020-05-21 es_ES
dc.identifier.issn 0887-0624 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164164
dc.description This document is the Accepted Manuscript version of a Published Work that appeared in final form in Energy & Fuels, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://doi.org/10.1021/acs.energyfuels.0c00403. es_ES
dc.description.abstract [EN] The liquids resulting from pyrolysis of industrial plastic waste (IPW) and postconsumer colored and white plastic film waste (PCPW and PWPW, respectively) at the pilot scale (80 kg/h) were widely characterized by different techniques to assess their potential as both petrochemical raw material and automotive diesel fuel. It was found that pyrolysis liquids mainly consisted of hydrocarbons in the diesel boiling point range (180-380 degrees C), amounting to approximately 50-55 vol %. Therefore, the results were further contrasted with limits established by the EN 590:2014 + A1:2017 standard for automotive diesel fuel. Although pyrolysis liquids showed good properties, they do not conform to some key fuel parameters for diesel engines, such as density, distillation curve, kinematic viscosity, flash point, and cold filter plugging point. To improve these properties, PWPW pyrolysis liquids were distilled in the diesel range and the liquid fractions were characterized according to automotive diesel standards. It was found that the diesel fraction met all specifications with the exception of the cold filter plugging point (-10 to 4 degrees C vs -10 degrees C winter/0 degrees C summer) and density (800-807 vs 820 kg/m(3)). To accomplish these standards, a blend of diesel obtained from PWPW pyrolysis liquids and commercial diesel (50/50 wt %) was also prepared and analyzed. Results revealed that the blend met the requirements of the 21 parameters demanded by the standard for a product to be marketed and used as automotive fuel in diesel engine vehicles. es_ES
dc.description.sponsorship The authors acknowledge the financial support of the Centre for the Development of Industrial Technology (grant number IDI-20150730) and the Ministerio de Ciencia, Innovacion y Universidades (Spain) (grant number DI-16-08700). es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof Energy & Fuels es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Plastic waste es_ES
dc.subject Pyrolysis es_ES
dc.subject Alternative fuel es_ES
dc.subject Distillation es_ES
dc.subject LDPE es_ES
dc.subject Transportation fuels es_ES
dc.subject Post-consumer plastic waste es_ES
dc.title Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acs.energyfuels.0c00403 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//IDI-20150730/ES/3R2020+ DEL RESIDUO AL RECURSO MEDIANTE EL RECICLAJE (1%2F7)/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//DI-16-08700/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Gala, A.; Guerrero, M.; Guirao, B.; Domine, ME.; Serra Alfaro, JM. (2020). Characterization and Distillation of Pyrolysis Liquids Coming from Polyolefins Segregated of MSW for Their Use as Automotive Diesel Fuel. Energy & Fuels. 34(5):5969-5982. https://doi.org/10.1021/acs.energyfuels.0c00403 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acs.energyfuels.0c00403 es_ES
dc.description.upvformatpinicio 5969 es_ES
dc.description.upvformatpfin 5982 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 34 es_ES
dc.description.issue 5 es_ES
dc.relation.pasarela S\414254 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2009). Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29(10), 2625-2643. doi:10.1016/j.wasman.2009.06.004 es_ES
dc.description.references Hestin, M.; Faninger, T.; Milios, L. Increased EU Plastics Recycling Targets: Environmental, Economic and Social Impact Assessment. 2015, https://www.plasticsrecyclers.eu/sites/default/files/BIO_Deloitte_PRE_Plastics%20Recycling%20Impact_Assesment_Final%20Report.pdf. es_ES
dc.description.references Lopez, G., Artetxe, M., Amutio, M., Bilbao, J., & Olazar, M. (2017). Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 73, 346-368. doi:10.1016/j.rser.2017.01.142 es_ES
dc.description.references Park, K.-B., Jeong, Y.-S., Guzelciftci, B., & Kim, J.-S. (2019). Characteristics of a new type continuous two-stage pyrolysis of waste polyethylene. Energy, 166, 343-351. doi:10.1016/j.energy.2018.10.078 es_ES
dc.description.references Wang, C., Wang, H., Fu, J., & Liu, Y. (2015). Flotation separation of waste plastics for recycling—A review. Waste Management, 41, 28-38. doi:10.1016/j.wasman.2015.03.027 es_ES
dc.description.references Wong, S. L., Ngadi, N., Abdullah, T. A. T., & Inuwa, I. M. (2015). Current state and future prospects of plastic waste as source of fuel: A review. Renewable and Sustainable Energy Reviews, 50, 1167-1180. doi:10.1016/j.rser.2015.04.063 es_ES
dc.description.references Panda, A. K., Singh, R. K., & Mishra, D. K. (2010). Thermolysis of waste plastics to liquid fuelA suitable method for plastic waste management and manufacture of value added products—A world prospective. Renewable and Sustainable Energy Reviews, 14(1), 233-248. doi:10.1016/j.rser.2009.07.005 es_ES
dc.description.references Brems, A., Baeyens, J., & Dewil, R. (2012). Recycling and recovery of post-consumer plastic solid waste in a European context. Thermal Science, 16(3), 669-685. doi:10.2298/tsci120111121b es_ES
dc.description.references Heydariaraghi, M., Ghorbanian, S., Hallajisani, A., & Salehpour, A. (2016). Fuel properties of the oils produced from the pyrolysis of commonly-used polymers: Effect of fractionating column. Journal of Analytical and Applied Pyrolysis, 121, 307-317. doi:10.1016/j.jaap.2016.08.010 es_ES
dc.description.references Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 amending Directive 1999/31/EC on the Landfill of Waste (Text with EEA Relevance); EU, 2018. https://eur-lex.europa.eu/legal-content/es/TXT/?uri=CELEX%3A32018L0850 (accessed May 29, 2019). es_ES
dc.description.references Ragaert, K., Delva, L., & Van Geem, K. (2017). Mechanical and chemical recycling of solid plastic waste. Waste Management, 69, 24-58. doi:10.1016/j.wasman.2017.07.044 es_ES
dc.description.references Dahlbo, H., Poliakova, V., Mylläri, V., Sahimaa, O., & Anderson, R. (2018). Recycling potential of post-consumer plastic packaging waste in Finland. Waste Management, 71, 52-61. doi:10.1016/j.wasman.2017.10.033 es_ES
dc.description.references Lazarevic, D., Aoustin, E., Buclet, N., & Brandt, N. (2010). Plastic waste management in the context of a European recycling society: Comparing results and uncertainties in a life cycle perspective. Resources, Conservation and Recycling, 55(2), 246-259. doi:10.1016/j.resconrec.2010.09.014 es_ES
dc.description.references Kunwar, B., Cheng, H. N., Chandrashekaran, S. R., & Sharma, B. K. (2016). Plastics to fuel: a review. Renewable and Sustainable Energy Reviews, 54, 421-428. doi:10.1016/j.rser.2015.10.015 es_ES
dc.description.references Angyal, A., Miskolczi, N., & Bartha, L. (2007). Petrochemical feedstock by thermal cracking of plastic waste. Journal of Analytical and Applied Pyrolysis, 79(1-2), 409-414. doi:10.1016/j.jaap.2006.12.031 es_ES
dc.description.references Czajczyńska, D., Anguilano, L., Ghazal, H., Krzyżyńska, R., Reynolds, A. J., Spencer, N., & Jouhara, H. (2017). Potential of pyrolysis processes in the waste management sector. Thermal Science and Engineering Progress, 3, 171-197. doi:10.1016/j.tsep.2017.06.003 es_ES
dc.description.references Diaz Silvarrey, L. S., & Phan, A. N. (2016). Kinetic study of municipal plastic waste. International Journal of Hydrogen Energy, 41(37), 16352-16364. doi:10.1016/j.ijhydene.2016.05.202 es_ES
dc.description.references Singh, R. K., Ruj, B., Sadhukhan, A. K., & Gupta, P. (2019). Thermal degradation of waste plastics under non-sweeping atmosphere: Part 1: Effect of temperature, product optimization, and degradation mechanism. Journal of Environmental Management, 239, 395-406. doi:10.1016/j.jenvman.2019.03.067 es_ES
dc.description.references Khoo, H. H. (2019). LCA of plastic waste recovery into recycled materials, energy and fuels in Singapore. Resources, Conservation and Recycling, 145, 67-77. doi:10.1016/j.resconrec.2019.02.010 es_ES
dc.description.references Al-Salem, S. M., Lettieri, P., & Baeyens, J. (2010). The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Progress in Energy and Combustion Science, 36(1), 103-129. doi:10.1016/j.pecs.2009.09.001 es_ES
dc.description.references Chen, D., Yin, L., Wang, H., & He, P. (2015). Reprint of: Pyrolysis technologies for municipal solid waste: A review. Waste Management, 37, 116-136. doi:10.1016/j.wasman.2015.01.022 es_ES
dc.description.references Sharma, B. K., Moser, B. R., Vermillion, K. E., Doll, K. M., & Rajagopalan, N. (2014). Production, characterization and fuel properties of alternative diesel fuel from pyrolysis of waste plastic grocery bags. Fuel Processing Technology, 122, 79-90. doi:10.1016/j.fuproc.2014.01.019 es_ES
dc.description.references Kalargaris, I., Tian, G., & Gu, S. (2017). The utilisation of oils produced from plastic waste at different pyrolysis temperatures in a DI diesel engine. Energy, 131, 179-185. doi:10.1016/j.energy.2017.05.024 es_ES
dc.description.references Bagri, R., & Williams, P. T. (2002). Catalytic pyrolysis of polyethylene. Journal of Analytical and Applied Pyrolysis, 63(1), 29-41. doi:10.1016/s0165-2370(01)00139-5 es_ES
dc.description.references Marcilla, A., Beltrán, M. I., & Navarro, R. (2009). Thermal and catalytic pyrolysis of polyethylene over HZSM5 and HUSY zeolites in a batch reactor under dynamic conditions. Applied Catalysis B: Environmental, 86(1-2), 78-86. doi:10.1016/j.apcatb.2008.07.026 es_ES
dc.description.references Uddin, M. A., Koizumi, K., Murata, K., & Sakata, Y. (1997). Thermal and catalytic degradation of structurally different types of polyethylene into fuel oil. Polymer Degradation and Stability, 56(1), 37-44. doi:10.1016/s0141-3910(96)00191-7 es_ES
dc.description.references Su, J., Fang, C., Yang, M., You, C., Lin, Q., Zhou, X., & Li, H. (2019). Catalytic pyrolysis of waste packaging polyethylene using AlCl3-NaCl eutectic salt as catalyst. Journal of Analytical and Applied Pyrolysis, 139, 274-281. doi:10.1016/j.jaap.2019.02.015 es_ES
dc.description.references Zhou, Q., Zheng, L., Wang, Y.-Z., Zhao, G.-M., & Wang, B. (2004). Catalytic degradation of low-density polyethylene and polypropylene using modified ZSM-5 zeolites. Polymer Degradation and Stability, 84(3), 493-497. doi:10.1016/j.polymdegradstab.2004.01.007 es_ES
dc.description.references Onwudili, J. A., Insura, N., & Williams, P. T. (2009). Composition of products from the pyrolysis of polyethylene and polystyrene in a closed batch reactor: Effects of temperature and residence time. Journal of Analytical and Applied Pyrolysis, 86(2), 293-303. doi:10.1016/j.jaap.2009.07.008 es_ES
dc.description.references Sakata, Y., Uddin, M. A., & Muto, A. (1999). Degradation of polyethylene and polypropylene into fuel oil by using solid acid and non-acid catalysts. Journal of Analytical and Applied Pyrolysis, 51(1-2), 135-155. doi:10.1016/s0165-2370(99)00013-3 es_ES
dc.description.references Williams, E. A., & Williams, P. T. (1997). The pyrolysis of individual plastics and a plastic mixture in a fixed bed reactor. Journal of Chemical Technology & Biotechnology, 70(1), 9-20. doi:10.1002/(sici)1097-4660(199709)70:1<9::aid-jctb700>3.0.co;2-e es_ES
dc.description.references Yan, G., Jing, X., Wen, H., & Xiang, S. (2015). Thermal Cracking of Virgin and Waste Plastics of PP and LDPE in a Semibatch Reactor under Atmospheric Pressure. Energy & Fuels, 29(4), 2289-2298. doi:10.1021/ef502919f es_ES
dc.description.references Miskolczi, N., Angyal, A., Bartha, L., & Valkai, I. (2009). Fuels by pyrolysis of waste plastics from agricultural and packaging sectors in a pilot scale reactor. Fuel Processing Technology, 90(7-8), 1032-1040. doi:10.1016/j.fuproc.2009.04.019 es_ES
dc.description.references Joo, H. S., & Guin, J. A. (1998). Continuous upgrading of a plastics pyrolysis liquid to an environmentally favorable gasoline range product. Fuel Processing Technology, 57(1), 25-40. doi:10.1016/s0378-3820(98)00067-8 es_ES
dc.description.references Das, P., & Tiwari, P. (2018). The effect of slow pyrolysis on the conversion of packaging waste plastics (PE and PP) into fuel. Waste Management, 79, 615-624. doi:10.1016/j.wasman.2018.08.021 es_ES
dc.description.references Fernández, E.; Guerrero, M.; Gala, A. Procedimiento para convertir residuos plásticos en productos líquidos útiles en la industria petroquímica. P2019310332020. es_ES
dc.description.references Corma, A., Martínez, C., & Sauvanaud, L. (2007). New materials as FCC active matrix components for maximizing diesel (light cycle oil, LCO) and minimizing its aromatic content. Catalysis Today, 127(1-4), 3-16. doi:10.1016/j.cattod.2007.03.056 es_ES
dc.description.references Pasquini, C., de Aquino, E. V., das Virgens Reboucas, M., & Gonzaga, F. B. (2007). Robust flow–batch coulometric/biamperometric titration system: Determination of bromine index and bromine number of petrochemicals. Analytica Chimica Acta, 600(1-2), 84-89. doi:10.1016/j.aca.2006.12.039 es_ES
dc.description.references Westerhout, R. W. J., Waanders, J., Kuipers, J. A. M., & van Swaaij, W. P. M. (1998). Recycling of Polyethene and Polypropene in a Novel Bench-Scale Rotating Cone Reactor by High-Temperature Pyrolysis. Industrial & Engineering Chemistry Research, 37(6), 2293-2300. doi:10.1021/ie970704q es_ES
dc.description.references Abbas-Abadi, M. S., Haghighi, M. N., & Yeganeh, H. (2012). The effect of temperature, catalyst, different carrier gases and stirrer on the produced transportation hydrocarbons of LLDPE degradation in a stirred reactor. Journal of Analytical and Applied Pyrolysis, 95, 198-204. doi:10.1016/j.jaap.2012.02.007 es_ES
dc.description.references Lee, K.-H. (2007). Pyrolysis of municipal plastic wastes separated by difference of specific gravity. Journal of Analytical and Applied Pyrolysis, 79(1-2), 362-367. doi:10.1016/j.jaap.2006.12.020 es_ES
dc.description.references Speight, J. G. (2011). Hydrocarbons from Petroleum. Handbook of Industrial Hydrocarbon Processes, 85-126. doi:10.1016/b978-0-7506-8632-7.10003-9 es_ES
dc.description.references Miandad, R., Barakat, M. A., Aburiazaiza, A. S., Rehan, M., Ismail, I. M. I., & Nizami, A. S. (2017). Effect of plastic waste types on pyrolysis liquid oil. International Biodeterioration & Biodegradation, 119, 239-252. doi:10.1016/j.ibiod.2016.09.017 es_ES
dc.description.references Serrano, D. P., Escola, J. M., Briones, L., & Arroyo, M. (2017). Hydroprocessing of the LDPE thermal cracking oil into transportation fuels over Pd supported on hierarchical ZSM-5 catalyst. Fuel, 206, 190-198. doi:10.1016/j.fuel.2017.06.003 es_ES
dc.description.references Walendziewski, J. (2002). Engine fuel derived from waste plastics by thermal treatment. Fuel, 81(4), 473-481. doi:10.1016/s0016-2361(01)00118-1 es_ES
dc.description.references Khan, M. Z. H., Sultana, M., Al-Mamun, M. R., & Hasan, M. R. (2016). Pyrolytic Waste Plastic Oil and Its Diesel Blend: Fuel Characterization. Journal of Environmental and Public Health, 2016, 1-6. doi:10.1155/2016/7869080 es_ES
dc.description.references Spain. Real Decreto 61/2006 de 31 de enero de 2006, por el que se determinan las especificaciones de gasolinas, gasóleos, fuelóleos y gases licuados del petróleo y se regula el uso de determinados biocarburantes. BOE núm. 41. Reference: BOE-A-2006-2779, 2006. https://www.boe.es/buscar/act.php?id=BOE-A-2006-2779 (accessed July 18, 2019). es_ES
dc.description.references Spain. Real Decreto 1088/2010, de 3 de septiembre, por el que se modifica el Real Decreto 61/2006, de 31 de enero, en lo relativo a las especificaciones de gasolinas, gasóleos, utilización de biocarburantes y contenido en azufre de los combustibles para uso marítimo. BOE núm. 215. Reference: BOE-A-2010-13704, 2010. https://www.boe.es/buscar/doc.php?id=BOE-A-2010-13704 (accessed July 18, 2019). es_ES
dc.description.references Min, K., Valco, D. J., Oldani, A., Kim, K., Temme, J., Kweon, C.-B. M., & Lee, T. (2019). Autoignition of varied cetane number fuels at low temperatures. Proceedings of the Combustion Institute, 37(4), 5003-5011. doi:10.1016/j.proci.2018.05.078 es_ES
dc.description.references Bezaire, N., Wadumesthrige, K., Simon Ng, K. Y., & Salley, S. O. (2010). Limitations of the use of cetane index for alternative compression ignition engine fuels. Fuel, 89(12), 3807-3813. doi:10.1016/j.fuel.2010.07.013 es_ES
dc.description.references Sarkar, D. K. (2015). Fuels and Combustion. Thermal Power Plant, 91-137. doi:10.1016/b978-0-12-801575-9.00003-2 es_ES
dc.description.references Li, Z., Liu, G., Cui, X., Sun, X., Li, S., Qian, Y., … Lu, X. (2018). Effects of the variation in diesel fuel components on the particulate matter and unregulated gaseous emissions from a common rail diesel engine. Fuel, 232, 279-289. doi:10.1016/j.fuel.2018.05.170 es_ES
dc.description.references Mguni, L. L., Yao, Y., Liu, X., Yuan, Z., & Hildebrandt, D. (2019). Ultra-deep desulphurization of both model and commercial diesel fuels by adsorption method. Journal of Environmental Chemical Engineering, 7(2), 102957. doi:10.1016/j.jece.2019.102957 es_ES
dc.description.references Chandra Srivastava, V. (2012). An evaluation of desulfurization technologies for sulfur removal from liquid fuels. RSC Adv., 2(3), 759-783. doi:10.1039/c1ra00309g es_ES
dc.description.references Sørensen, G., Pedersen, D. V., Nørgaard, A. K., Sørensen, K. B., & Nygaard, S. D. (2011). Microbial growth studies in biodiesel blends. Bioresource Technology, 102(8), 5259-5264. doi:10.1016/j.biortech.2011.02.017 es_ES
dc.description.references López, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2011). Dechlorination of fuels in pyrolysis of PVC containing plastic wastes. Fuel Processing Technology, 92(2), 253-260. doi:10.1016/j.fuproc.2010.05.008 es_ES
dc.description.references Murata, K., Brebu, M., & Sakata, Y. (2009). The effect of PVC on thermal and catalytic degradation of polyethylene, polypropylene and polystyrene by a continuous flow reactor. Journal of Analytical and Applied Pyrolysis, 86(1), 33-38. doi:10.1016/j.jaap.2009.04.003 es_ES
dc.description.references Uddin, M. A., Sakata, Y., Shiraga, Y., Muto, A., & Murata, K. (1999). Dechlorination of Chlorine Compounds in Poly(vinyl chloride) Mixed Plastics Derived Oil by Solid Sorbents. Industrial & Engineering Chemistry Research, 38(4), 1406-1410. doi:10.1021/ie980445k es_ES
dc.description.references Lopez-Urionabarrenechea, A., de Marco, I., Caballero, B. M., Laresgoiti, M. F., & Adrados, A. (2015). Upgrading of chlorinated oils coming from pyrolysis of plastic waste. Fuel Processing Technology, 137, 229-239. doi:10.1016/j.fuproc.2015.04.015 es_ES
dc.description.references Knothe, G., & Steidley, K. R. (2005). Lubricity of Components of Biodiesel and Petrodiesel. The Origin of Biodiesel Lubricity. Energy & Fuels, 19(3), 1192-1200. doi:10.1021/ef049684c es_ES
dc.description.references Omori, T.; Tanaka, A.; Yamada, K.; Bunne, S. In Biodiesel Deposit Formation Mechanism and Improvement of Fuel Injection Equipment (FIE), SAE International Powertrains, Fuels and Lubricants Meeting, SAE Technical Paper; SAE International, 2011. es_ES
dc.description.references Candeia, R. A., Silva, M. C. D., Carvalho Filho, J. R., Brasilino, M. G. A., Bicudo, T. C., Santos, I. M. G., & Souza, A. G. (2009). Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends. Fuel, 88(4), 738-743. doi:10.1016/j.fuel.2008.10.015 es_ES
dc.description.references Mostafa, S. S. M., & El-Gendy, N. S. (2017). Evaluation of fuel properties for microalgae Spirulina platensis bio-diesel and its blends with Egyptian petro-diesel. Arabian Journal of Chemistry, 10, S2040-S2050. doi:10.1016/j.arabjc.2013.07.034 es_ES
dc.description.references Chandran, D., Ng, H. K., Lau, H. L. N., Gan, S., & Choo, Y. M. (2017). Deterioration of palm biodiesel fuel under common rail diesel engine operation. Energy, 120, 854-863. doi:10.1016/j.energy.2016.11.136 es_ES
dc.description.references Ferris, A. M., & Rothamer, D. A. (2016). Methodology for the experimental measurement of vapor–liquid equilibrium distillation curves using a modified ASTM D86 setup. Fuel, 182, 467-479. doi:10.1016/j.fuel.2016.05.099 es_ES
dc.description.references Aydın, H., & İlkılıç, C. (2012). Optimization of fuel production from waste vehicle tires by pyrolysis and resembling to diesel fuel by various desulfurization methods. Fuel, 102, 605-612. doi:10.1016/j.fuel.2012.06.067 es_ES
dc.description.references Maceiras, R., Alfonsín, V., & Morales, F. J. (2017). Recycling of waste engine oil for diesel production. Waste Management, 60, 351-356. doi:10.1016/j.wasman.2016.08.009 es_ES
dc.description.references San José Alonso, J., López Sastre, J. A., Romero-Ávila, C., & López Romero, E. J. (2006). Combustion of rapeseed oil and diesel oil mixtures for use in the production of heat energy. Fuel Processing Technology, 87(2), 97-102. doi:10.1016/j.fuproc.2005.07.004 es_ES
dc.description.references Aleme, H. G., Assunção, R. A., Carvalho, M. M. O., & Barbeira, P. J. S. (2012). Determination of specific gravity and kinematic viscosity of diesel using distillation curves and multivariate calibration. Fuel Processing Technology, 102, 90-95. doi:10.1016/j.fuproc.2012.04.016 es_ES
dc.description.references Murphy, F., Devlin, G., & McDonnell, K. (2013). The Evaluation of Flash Point and Cold Filter Plugging Point with Blends of Diesel and Cyn-Diesel Pyrolysis Fuel for Automotive Engines. The Open Fuels & Energy Science Journal, 6(1), 1-8. doi:10.2174/1876973x01306010001 es_ES
dc.description.references Rashid, U., Anwar, F., & Knothe, G. (2009). Evaluation of biodiesel obtained from cottonseed oil. Fuel Processing Technology, 90(9), 1157-1163. doi:10.1016/j.fuproc.2009.05.016 es_ES
dc.description.references Sharma, B. K., Suarez, P. A. Z., Perez, J. M., & Erhan, S. Z. (2009). Oxidation and low temperature properties of biofuels obtained from pyrolysis and alcoholysis of soybean oil and their blends with petroleum diesel. Fuel Processing Technology, 90(10), 1265-1271. doi:10.1016/j.fuproc.2009.06.011 es_ES
dc.description.references Jeong, G.-T., Park, J.-H., Park, S.-H., & Park, D.-H. (2008). Estimating and improving cold filter plugging points by blending biodiesels with different fatty acid contents. Biotechnology and Bioprocess Engineering, 13(4), 505-510. doi:10.1007/s12257-008-0144-y es_ES
dc.description.references Knothe, G., & Steidley, K. R. (2005). Kinematic viscosity of biodiesel fuel components and related compounds. Influence of compound structure and comparison to petrodiesel fuel components. Fuel, 84(9), 1059-1065. doi:10.1016/j.fuel.2005.01.016 es_ES
dc.description.references Escola, J. M., Aguado, J., Serrano, D. P., & Briones, L. (2014). Transportation fuel production by combination of LDPE thermal cracking and catalytic hydroreforming. Waste Management, 34(11), 2176-2184. doi:10.1016/j.wasman.2014.06.010 es_ES
dc.description.references Khalife, E., Tabatabaei, M., Demirbas, A., & Aghbashlo, M. (2017). Impacts of additives on performance and emission characteristics of diesel engines during steady state operation. Progress in Energy and Combustion Science, 59, 32-78. doi:10.1016/j.pecs.2016.10.001 es_ES
dc.description.references İçıngür, Y., & Altiparmak, D. (2003). Effect of fuel cetane number and injection pressure on a DI Diesel engine performance and emissions. Energy Conversion and Management, 44(3), 389-397. doi:10.1016/s0196-8904(02)00063-8 es_ES
dc.description.references Faussone, G. C. (2018). Transportation fuel from plastic: Two cases of study. Waste Management, 73, 416-423. doi:10.1016/j.wasman.2017.11.027 es_ES
dc.subject.ods 09.- Desarrollar infraestructuras resilientes, promover la industrialización inclusiva y sostenible, y fomentar la innovación es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem