Mostrar el registro sencillo del ítem
dc.contributor.author | Arias-Carrascal, Karen Sulay | es_ES |
dc.contributor.author | Carceller-Carceller, Jose Miguel | es_ES |
dc.contributor.author | Climent Olmedo, María José | es_ES |
dc.contributor.author | Corma Canós, Avelino | es_ES |
dc.contributor.author | Iborra Chornet, Sara | es_ES |
dc.date.accessioned | 2021-03-25T04:31:34Z | |
dc.date.available | 2021-03-25T04:31:34Z | |
dc.date.issued | 2020-04-07 | es_ES |
dc.identifier.issn | 1864-5631 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164217 | |
dc.description | This is the peer reviewed version of the following article: K. S. Arias, J. M. Carceller, M. J. Climent, A. Corma, S. Iborra, ChemSusChem 2020, 13, 1864, which has been published in final form at https://doi.org/10.1002/cssc.201903123. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Biobased plasticizers, as substitutes for phthalates, have been synthesized from 5-hydroxymethylfurfural (HMF) and carboxylic acids (or esters) through a chemoenzymatic cascade process that involves as its first step the reduction of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan (BHMF), followed by the esterification of BHMF with carboxylic acids (or esters) by using a supported lipase (Novozym 435). The reduction of HMF into BHMF is performed by using monodisperse metallic Co nanoparticles with a thin carbon shell (Co@C) with high activity and selectivity. After optimization of reaction conditions (temperature, hydrogen pressure, and solvent), it is possible to achieve 97% conversion of HMF with 99% selectivity to BHMF after 2 h reaction time. The reduction of HMF and esterification of BHMF using carboxylic acids or vinyl esters as acyl donors by lipase are optimized separately in batch and in fixed-bed continuous reactors. The coupling of two flow reactors (for reduction and subsequent esterification) working under optimized reaction conditions affords the diesters of BHMF in roughly 90% yield with no loss of activity during 60 h of operation. | es_ES |
dc.description.sponsorship | The research leading to these results has received funding from the Spanish Ministry of Science, Innovation and Universities through "Severo Ochoa" Excellence Programme (SEV-2016-0683) and the PGC2018-097277-B-100 (MCIU/AEI/FEDER, UE) project. The authors also thank the Microscopy Service of UPV for kind help with measurements. JMC thanks UPV for a predoctoral fellowship. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | John Wiley & Sons | es_ES |
dc.relation.ispartof | ChemSusChem | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Biocatalysis | es_ES |
dc.subject | Biomass valorization | es_ES |
dc.subject | Cascade synthesis | es_ES |
dc.subject | Cobalt | es_ES |
dc.subject | Lipase | es_ES |
dc.subject.classification | QUIMICA ORGANICA | es_ES |
dc.title | Chemoenzymatic Synthesis of 5-Hydroxymethylfurfural (HMF) Derived Plasticizers by Coupling HMF Reduction with Enzymatic Esterification | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1002/cssc.201903123 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Química - Departament de Química | es_ES |
dc.description.bibliographicCitation | Arias-Carrascal, KS.; Carceller-Carceller, JM.; Climent Olmedo, MJ.; Corma Canós, A.; Iborra Chornet, S. (2020). Chemoenzymatic Synthesis of 5-Hydroxymethylfurfural (HMF) Derived Plasticizers by Coupling HMF Reduction with Enzymatic Esterification. ChemSusChem. 13(7):1864-1875. https://doi.org/10.1002/cssc.201903123 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1002/cssc.201903123 | es_ES |
dc.description.upvformatpinicio | 1864 | es_ES |
dc.description.upvformatpfin | 1875 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 13 | es_ES |
dc.description.issue | 7 | es_ES |
dc.identifier.pmid | 31944622 | es_ES |
dc.relation.pasarela | S\409257 | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | Kucherov, F. A., Romashov, L. V., Galkin, K. I., & Ananikov, V. P. (2018). Chemical Transformations of Biomass-Derived C6-Furanic Platform Chemicals for Sustainable Energy Research, Materials Science, and Synthetic Building Blocks. ACS Sustainable Chemistry & Engineering, 6(7), 8064-8092. doi:10.1021/acssuschemeng.8b00971 | es_ES |
dc.description.references | Garcia-Ortiz, A., Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2018). One-Pot Synthesis of Biomass-Derived Surfactants by Reacting Hydroxymethylfurfural, Glycerol, and Fatty Alcohols on Solid Acid Catalysts. ChemSusChem, 11(17), 2870-2880. doi:10.1002/cssc.201801132 | es_ES |
dc.description.references | Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2015). Synthesis of high quality alkyl naphthenic kerosene by reacting an oil refinery with a biomass refinery stream. Energy & Environmental Science, 8(1), 317-331. doi:10.1039/c4ee03194f | es_ES |
dc.description.references | García-Ortiz, A., Vidal, J. D., Climent, M. J., Concepción, P., Corma, A., & Iborra, S. (2019). Chemicals from Biomass: Selective Synthesis of N-Substituted Furfuryl Amines by the One-Pot Direct Reductive Amination of Furanic Aldehydes. ACS Sustainable Chemistry & Engineering, 7(6), 6243-6250. doi:10.1021/acssuschemeng.8b06631 | es_ES |
dc.description.references | Arias, K. S., Climent, M. J., Corma, A., & Iborra, S. (2016). Chemicals from Biomass: Synthesis of Biologically Active Furanochalcones by Claisen–Schmidt Condensation of Biomass-Derived 5-hydroxymethylfurfural (HMF) with Acetophenones. Topics in Catalysis, 59(13-14), 1257-1265. doi:10.1007/s11244-016-0646-3 | es_ES |
dc.description.references | Hu, L., Xu, J., Zhou, S., He, A., Tang, X., Lin, L., … Zhao, Y. (2018). Catalytic Advances in the Production and Application of Biomass-Derived 2,5-Dihydroxymethylfuran. ACS Catalysis, 8(4), 2959-2980. doi:10.1021/acscatal.7b03530 | es_ES |
dc.description.references | Cottier, L., Descotes, G., & Soro, Y. (2003). Heteromacrocycles from Ring-Closing Metathesis of Unsaturated Furanic Ethers. Synthetic Communications, 33(24), 4285-4295. doi:10.1081/scc-120026858 | es_ES |
dc.description.references | Gelmini, A., Albonetti, S., Cavani, F., Cesari, C., Lolli, A., Zanotti, V., & Mazzoni, R. (2016). Oxidant free one-pot transformation of bio-based 2,5-bis-hydroxymethylfuran into α-6-hydroxy-6-methyl-4-enyl-2H-pyran-3-one in water. Applied Catalysis B: Environmental, 180, 38-43. doi:10.1016/j.apcatb.2015.06.003 | es_ES |
dc.description.references | Hu, L., Lin, L., & Liu, S. (2014). Chemoselective Hydrogenation of Biomass-Derived 5-Hydroxymethylfurfural into the Liquid Biofuel 2,5-Dimethylfuran. Industrial & Engineering Chemistry Research, 53(24), 9969-9978. doi:10.1021/ie5013807 | es_ES |
dc.description.references | Lăcătuş, M. A., Bencze, L. C., Toşa, M. I., Paizs, C., & Irimie, F.-D. (2018). Eco-Friendly Enzymatic Production of 2,5-Bis(hydroxymethyl)furan Fatty Acid Diesters, Potential Biodiesel Additives. ACS Sustainable Chemistry & Engineering, 6(9), 11353-11359. doi:10.1021/acssuschemeng.8b01206 | es_ES |
dc.description.references | L.Stensrud K.Wicklund Pat. WO 2016/028845 A1 2016. | es_ES |
dc.description.references | Hu, L., Lin, L., Wu, Z., Zhou, S., & Liu, S. (2017). Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 74, 230-257. doi:10.1016/j.rser.2017.02.042 | es_ES |
dc.description.references | Chen, S., Wojcieszak, R., Dumeignil, F., Marceau, E., & Royer, S. (2018). How Catalysts and Experimental Conditions Determine the Selective Hydroconversion of Furfural and 5-Hydroxymethylfurfural. Chemical Reviews, 118(22), 11023-11117. doi:10.1021/acs.chemrev.8b00134 | es_ES |
dc.description.references | Zhu, Y., Kong, X., Zheng, H., Ding, G., Zhu, Y., & Li, Y.-W. (2015). Efficient synthesis of 2,5-dihydroxymethylfuran and 2,5-dimethylfuran from 5-hydroxymethylfurfural using mineral-derived Cu catalysts as versatile catalysts. Catalysis Science & Technology, 5(8), 4208-4217. doi:10.1039/c5cy00700c | es_ES |
dc.description.references | Li, X.-L., Zhang, K., Chen, S.-Y., Li, C., Li, F., Xu, H.-J., & Fu, Y. (2018). A cobalt catalyst for reductive etherification of 5-hydroxymethyl-furfural to 2,5-bis(methoxymethyl)furan under mild conditions. Green Chemistry, 20(5), 1095-1105. doi:10.1039/c7gc03072j | es_ES |
dc.description.references | Liu, L., Concepción, P., & Corma, A. (2016). Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. Journal of Catalysis, 340, 1-9. doi:10.1016/j.jcat.2016.04.006 | es_ES |
dc.description.references | Liu, L., Gao, F., Concepción, P., & Corma, A. (2017). A new strategy to transform mono and bimetallic non-noble metal nanoparticles into highly active and chemoselective hydrogenation catalysts. Journal of Catalysis, 350, 218-225. doi:10.1016/j.jcat.2017.03.014 | es_ES |
dc.description.references | De la Peña O′Shea, V. A., de la Piscina, P. R., Homs, N., Aromí, G., & Fierro, J. L. G. (2009). Development of Hexagonal Closed-Packed Cobalt Nanoparticles Stable at High Temperature. Chemistry of Materials, 21(23), 5637-5643. doi:10.1021/cm900845h | es_ES |
dc.description.references | Hadjiev, V. G., Iliev, M. N., & Vergilov, I. V. (1988). The Raman spectra of Co3O4. Journal of Physics C: Solid State Physics, 21(7), L199-L201. doi:10.1088/0022-3719/21/7/007 | es_ES |
dc.description.references | Ferrari, A. C., & Robertson, J. (2004). Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1824), 2477-2512. doi:10.1098/rsta.2004.1452 | es_ES |
dc.description.references | Wang, Y., Alsmeyer, D. C., & McCreery, R. L. (1990). Raman spectroscopy of carbon materials: structural basis of observed spectra. Chemistry of Materials, 2(5), 557-563. doi:10.1021/cm00011a018 | es_ES |
dc.description.references | Zhong, W., Liu, H., Bai, C., Liao, S., & Li, Y. (2015). Base-Free Oxidation of Alcohols to Esters at Room Temperature and Atmospheric Conditions using Nanoscale Co-Based Catalysts. ACS Catalysis, 5(3), 1850-1856. doi:10.1021/cs502101c | es_ES |
dc.description.references | Westerhaus, F. A., Jagadeesh, R. V., Wienhöfer, G., Pohl, M.-M., Radnik, J., Surkus, A.-E., … Beller, M. (2013). Heterogenized cobalt oxide catalysts for nitroarene reduction by pyrolysis of molecularly defined complexes. Nature Chemistry, 5(6), 537-543. doi:10.1038/nchem.1645 | es_ES |
dc.description.references | Han, J., Kim, Y.-H., Jang, H.-S., Hwang, S.-Y., Jegal, J., Kim, J. W., & Lee, Y.-S. (2016). Heterogeneous zirconia-supported ruthenium catalyst for highly selective hydrogenation of 5-hydroxymethyl-2-furaldehyde to 2,5-bis(hydroxymethyl)furans in various n-alcohol solvents. RSC Advances, 6(96), 93394-93397. doi:10.1039/c6ra18016g | es_ES |
dc.description.references | Chatterjee, M., Ishizaka, T., & Kawanami, H. (2014). Selective hydrogenation of 5-hydroxymethylfurfural to 2,5-bis-(hydroxymethyl)furan using Pt/MCM-41 in an aqueous medium: a simple approach. Green Chem., 16(11), 4734-4739. doi:10.1039/c4gc01127a | es_ES |
dc.description.references | Climent, M. J., Corma, A., Iborra, S., Martínez-Silvestre, S., & Velty, A. (2013). Preparation of Glycerol Carbonate Esters by using Hybrid Nafion-Silica Catalyst. ChemSusChem, 6(7), 1224-1234. doi:10.1002/cssc.201300146 | es_ES |
dc.description.references | Climent, M. J., Corma, A., Hamid, S. B. A., Iborra, S., & Mifsud, M. (2006). Chemicals from biomass derived products: synthesis of polyoxyethyleneglycol esters from fatty acid methyl esters with solid basic catalysts. Green Chemistry, 8(6), 524. doi:10.1039/b518082a | es_ES |
dc.description.references | Krystof, M., Pérez-Sánchez, M., & Domínguez de María, P. (2013). Lipase-Catalyzed (Trans)esterification of 5-Hydroxy- methylfurfural and Separation from HMF Esters using Deep-Eutectic Solvents. ChemSusChem, 6(4), 630-634. doi:10.1002/cssc.201200931 | es_ES |
dc.description.references | Catoni, E., Cernia, E., & Palocci, C. (1996). Different aspects of ‘solvent engineering’ in lipase biocatalysed esterifications. Journal of Molecular Catalysis A: Chemical, 105(1-2), 79-86. doi:10.1016/1381-1169(95)00153-0 | es_ES |
dc.description.references | José, C., Bonetto, R. D., Gambaro, L. A., Torres, M. del P. G., Foresti, M. L., Ferreira, M. L., & Briand, L. E. (2011). Investigation of the causes of deactivation–degradation of the commercial biocatalyst Novozym® 435 in ethanol and ethanol–aqueous media. Journal of Molecular Catalysis B: Enzymatic, 71(3-4), 95-107. doi:10.1016/j.molcatb.2011.04.004 | es_ES |
dc.description.references | Malinowska, B., Majewska, P., Szatkowski, P., Kafarski, P., & Lejczak, B. (2011). Kinetic resolution of (±)-diethyl- and dibenzyl hydroxy(phenyl)methanephosphonates and their acyl derivatives with lipases. Biocatalysis and Biotransformation, 29(6), 271-277. doi:10.3109/10242422.2011.631211 | es_ES |
dc.description.references | Hameršak, Z., Ljubović, E., Merćep, M., Mesić, M., & Šunjić, V. (2001). Chemoenzymatic Synthesis of All Four Cytoxazone Stereoisomers. Synthesis, 2001(13), 1989-1992. doi:10.1055/s-2001-17711 | es_ES |
dc.description.references | Serum, E. M., Sutton, C. A., Renner, A. C., Dawn, D., & Sibi, M. P. (2018). New AB type monomers from lignocellulosic biomass. Pure and Applied Chemistry, 91(3), 389-396. doi:10.1515/pac-2018-0913 | es_ES |