- -

In vitro antagonistic activity of Trichoderma harzianum against Fusarium sudanense causing seedling Blight and seed rot on wheat

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

In vitro antagonistic activity of Trichoderma harzianum against Fusarium sudanense causing seedling Blight and seed rot on wheat

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Larran, Silvina es_ES
dc.contributor.author Santamarina Siurana, M. Pilar es_ES
dc.contributor.author Rosello Caselles, Josefa es_ES
dc.contributor.author Simón, María Rosa es_ES
dc.contributor.author Perelló, Analía es_ES
dc.date.accessioned 2021-03-25T04:32:03Z
dc.date.available 2021-03-25T04:32:03Z
dc.date.issued 2020-09-15 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164227
dc.description.abstract [EN] Fusarium sudanense is a novel fungus recently isolated from asymptomatic samples of wheat grains in Argentina. The fungus caused symptoms of seedling blight and seed rot on wheat after artificial inoculations. It is known that the production of mycotoxins by pathogens belonging to the Fusarium genus is harmful to human and animal health. Moreover, the warm and humid conditions that are favorable for growth and mycotoxin production of these species put the Argentinian wheat production area at a high risk of mycotoxin contamination with this novel pathogen. The aim of this work was to evaluate the antagonistic effect of Trichoderma harzianum against F. sudanense under in vitro tests at different environmental conditions. Fungi were screened in dual culture at different water activities (alpha(w)) (0.995, 0.98, 0.95, and 0.90) and temperatures (25 and 15 degrees C). The growth rate of the fungi, interaction types, and dominance index were evaluated. Also, the interaction between T. harzianum and F. sudanense was examined by light and cryo-scanning microscopy. T. harzianum suppressed the growth of F. sudanense at 0.995, 0.98, and 0.95 alpha(w) at 25 degrees C and 0.995 and 0.98 alpha(w) at 15 degrees C. Macroscopic study revealed different interaction types between F. sudanense and T. harzianum on dual culture. Dominance on contact where the colonies of T. harzianum overgrew the pathogen was the most common interaction type determined. The competitive capacity of T. harzianum was diminished by decreasing the temperature and alpha(w). At 0.95 alpha(w) and 15 degrees C, both fungi grew slowly, and interaction type "A" was assigned. Microscopic analysis from the interaction zone of dual cultures revealed an attachment of T. harzianum to the F. sudanense hyphae, penetration with or without formation of appressorium-like structures, coiling, plasmolysis, and a veil formation. According to our results, T. harzianum demonstrated capability to antagonize F. sudanense and could be a promising biocontrol agent. es_ES
dc.description.sponsorship This work was supported by the Escuela Tecnica Superior de Ingenieria Agronomica y del Medio Natural (ETSIANM), UPV, Spain, and by Facultad de Ciencias Agrarias y Forestales of the Universidad Nacional de La Plata (grant no. 11A 296), Argentina. es_ES
dc.language Inglés es_ES
dc.publisher American Chemical Society es_ES
dc.relation.ispartof ACS Omega es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Antaganistic activity es_ES
dc.subject Trichoderma es_ES
dc.subject Fusarium es_ES
dc.subject Water activity es_ES
dc.subject Temperature es_ES
dc.subject.classification BOTANICA es_ES
dc.title In vitro antagonistic activity of Trichoderma harzianum against Fusarium sudanense causing seedling Blight and seed rot on wheat es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1021/acsomega.0c03090 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UNLP//11A 296/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Larran, S.; Santamarina Siurana, MP.; Rosello Caselles, J.; Simón, MR.; Perelló, A. (2020). In vitro antagonistic activity of Trichoderma harzianum against Fusarium sudanense causing seedling Blight and seed rot on wheat. ACS Omega. 5(36):23276-23283. https://doi.org/10.1021/acsomega.0c03090 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1021/acsomega.0c03090 es_ES
dc.description.upvformatpinicio 23276 es_ES
dc.description.upvformatpfin 23283 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 5 es_ES
dc.description.issue 36 es_ES
dc.identifier.eissn 2470-1343 es_ES
dc.identifier.pmid 32954178 es_ES
dc.identifier.pmcid PMC7495787 es_ES
dc.relation.pasarela S\422687 es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Universidad Nacional de La Plata, Argentina es_ES
dc.description.references Arnold, A. E. (2007). Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews, 21(2-3), 51-66. doi:10.1016/j.fbr.2007.05.003 es_ES
dc.description.references Porras-Alfaro, A., & Bayman, P. (2011). Hidden Fungi, Emergent Properties: Endophytes and Microbiomes. Annual Review of Phytopathology, 49(1), 291-315. doi:10.1146/annurev-phyto-080508-081831 es_ES
dc.description.references Keswani, C., Singh, H. B., Hermosa, R., García-Estrada, C., Caradus, J., He, Y.-W., … Sansinenea, E. (2019). Antimicrobial secondary metabolites from agriculturally important fungi as next biocontrol agents. Applied Microbiology and Biotechnology, 103(23-24), 9287-9303. doi:10.1007/s00253-019-10209-2 es_ES
dc.description.references Mesa Vanegas, A. M., Calle Osorno, J., & Marín Pavas, D. A. (2020). Metabolitos secundarios en Trichoderma spp. y sus aplicaciones biotecnológicas agrícolas. Actualidades Biológicas, 41(111). doi:10.17533/udea.acbi.v41n111a02 es_ES
dc.description.references Moussa, T. A. A., Al-Zahrani, H. S., Kadasa, N. M. S., Ahmed, S. A., de Hoog, G. S., & Al-Hatmi, A. M. S. (2017). Two new species of the Fusarium fujikuroi species complex isolated from the natural environment. Antonie van Leeuwenhoek, 110(6), 819-832. doi:10.1007/s10482-017-0855-1 es_ES
dc.description.references Larran, S., Santamarina Siurana, M. P., Roselló Caselles, J., Simón, M. R., & Perelló, A. (2020). Fusarium sudanense, endophytic fungus causing typical symptoms of seedling blight and seed rot on wheat. Journal of King Saud University - Science, 32(1), 468-474. doi:10.1016/j.jksus.2018.07.005 es_ES
dc.description.references Larran, S. Estudio de la micobiota endofítica asociada al trigo y soja y su significancia en la interacción con patógenos fúngicos; Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata. 2016 http://sedici.unlp.edu.ar/handle/10915/54499. es_ES
dc.description.references Shi, W., Tan, Y., Wang, S., Gardiner, D., De Saeger, S., Liao, Y., … Wu, A. (2016). Mycotoxigenic Potentials of Fusarium Species in Various Culture Matrices Revealed by Mycotoxin Profiling. Toxins, 9(1), 6. doi:10.3390/toxins9010006 es_ES
dc.description.references Bockus, W. W., Bowden, R. L., Hunger, R. M., Morrill, W. L., Murray, T. D., & Smiley, R. W. (Eds.). (2010). Compendium of Wheat Diseases and Pests, Third Edition. doi:10.1094/9780890546604 es_ES
dc.description.references Leslie, J. F., & Summerell, B. A. (Eds.). (2006). The Fusarium Laboratory Manual. doi:10.1002/9780470278376 es_ES
dc.description.references Perincherry, L., Lalak-Kańczugowska, J., & Stępień, Ł. (2019). Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins, 11(11), 664. doi:10.3390/toxins11110664 es_ES
dc.description.references Edwards, J., Auer, D., de Alwis, S.-K., Summerell, B., Aoki, T., Proctor, R. H., … O’Donnell, K. (2016). Fusarium agapanthi sp. nov., a novel bikaverin and fusarubin-producing leaf and stem spot pathogen of Agapanthus praecox (African lily) from Australia and Italy. Mycologia, 108(5), 981-992. doi:10.3852/15-333 es_ES
dc.description.references Andrade, J. F., & Satorre, E. H. (2015). Single and double crop systems in the Argentine Pampas: Environmental determinants of annual grain yield. Field Crops Research, 177, 137-147. doi:10.1016/j.fcr.2015.03.008 es_ES
dc.description.references Ortega, L. M., Dinolfo, M. I., Astoreca, A. L., Alberione, E. J., Stenglein, S. A., & Alconada, T. M. (2015). Molecular and mycotoxin characterization of Fusarium graminearum isolates obtained from wheat at a single field in Argentina. Mycological Progress, 15(1). doi:10.1007/s11557-015-1147-7 es_ES
dc.description.references Perelló, A. E., & Dal Bello, G. M. (2011). Suppression of tan spot and plant growth promotion of wheat by synthetic and biological inducers under field conditions. Annals of Applied Biology, 158(3), 267-274. doi:10.1111/j.1744-7348.2011.00460.x es_ES
dc.description.references Harman, G. E., Petzoldt, R., Comis, A., & Chen, J. (2004). Interactions Between Trichoderma harzianum Strain T22 and Maize Inbred Line Mo17 and Effects of These Interactions on Diseases Caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology®, 94(2), 147-153. doi:10.1094/phyto.2004.94.2.147 es_ES
dc.description.references Perelló, A., Lampugnani, G., Abramoff, C., Slusarenko, A., & Bello, G. D. (2016). Suppression of seed-borneAlternaria arborescensand growth enhancement of wheat with biorational fungicides. International Journal of Pest Management, 63(2), 157-165. doi:10.1080/09670874.2016.1252478 es_ES
dc.description.references Sempere, F., & Santamarina, M. P. (2009). Antagonistic interactions between fungal rice pathogenFusarium Verticillioides (Sacc.) Nirenberg andTrichoderma harzianum Rifai. Annals of Microbiology, 59(2), 259-266. doi:10.1007/bf03178326 es_ES
dc.description.references SAMAPUNDO, S., DEVLIEHGERE, F., DE MEULENAER, B., & DEBEVERE, J. (2005). Effect of Water Activity and Temperature on Growth and the Relationship between Fumonisin Production and the Radial Growth of Fusarium verticillioides and Fusarium proliferatum on Corn. Journal of Food Protection, 68(5), 1054-1059. doi:10.4315/0362-028x-68.5.1054 es_ES
dc.description.references Sempere Ferre, F., & Santamarina, M. P. (2010). Efficacy of Trichoderma harzianum in suppression of Fusarium culmorum. Annals of Microbiology, 60(2), 335-340. doi:10.1007/s13213-010-0047-y es_ES
dc.description.references Llorens, A., Mateo, R., Hinojo, M. J., Valle-Algarra, F. M., & Jiménez, M. (2004). Influence of environmental factors on the biosynthesis of type B trichothecenes by isolates of Fusarium spp. from Spanish crops. International Journal of Food Microbiology, 94(1), 43-54. doi:10.1016/j.ijfoodmicro.2003.12.017 es_ES
dc.description.references Magan, N., & Medina, A. (2016). Integrating gene expression, ecology and mycotoxin production by Fusarium and Aspergillus species in relation to interacting environmental factors. World Mycotoxin Journal, 9(5), 673-684. doi:10.3920/wmj2016.2076 es_ES
dc.description.references Pilar Santamarina, M., & Roselló, J. (2006). Influence of temperature and water activity on the antagonism of Trichoderma harzianum to Verticillium and Rhizoctonia. Crop Protection, 25(10), 1130-1134. doi:10.1016/j.cropro.2006.02.006 es_ES
dc.description.references Prasad, R. D., Rangeshwaran, R., Hegde, S. V., & Anuroop, C. P. (2002). Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Protection, 21(4), 293-297. doi:10.1016/s0261-2194(01)00100-4 es_ES
dc.description.references Perello, A. E., Monaco, C. I., Moreno, M. V., Cordo, C. A., & Simon, M. R. (2006). The effect ofTrichoderma harzianumandT. koningiion the control of tan spot(Pyrenophora tritici-repentis) and leaf blotch (Mycosphaerella graminicola) of wheat under field conditions in Argentina. Biocontrol Science and Technology, 16(8), 803-813. doi:10.1080/09583150600700099 es_ES
dc.description.references Larran, S., Simón, M. R., Moreno, M. V., Siurana, M. P. S., & Perelló, A. (2016). Endophytes from wheat as biocontrol agents against tan spot disease. Biological Control, 92, 17-23. doi:10.1016/j.biocontrol.2015.09.002 es_ES
dc.description.references Nakkeeran, S., Renukadevi, P., & Aiyanathan, K. E. A. (2016). Exploring the Potential of Trichoderma for the Management of Seed and Soil-Borne Diseases of Crops. Integrated Pest Management of Tropical Vegetable Crops, 77-130. doi:10.1007/978-94-024-0924-6_4 es_ES
dc.description.references Magan, N., & Lacey, J. (1984). Effect of water activity, temperature and substrate on interactions between field and storage fungi. Transactions of the British Mycological Society, 82(1), 83-93. doi:10.1016/s0007-1536(84)80214-4 es_ES
dc.description.references Sinclair, J. B. (1991). Latent Infection of Soybean Plants and Seeds by Fungi. Plant Disease, 75(3), 220. doi:10.1094/pd-75-0220 es_ES
dc.description.references Verhoeff, K. (1974). Latent Infections by Fungi. Annual Review of Phytopathology, 12(1), 99-110. doi:10.1146/annurev.py.12.090174.000531 es_ES
dc.description.references Sempere, F., & Santamarina, M. P. (2011). Cryo-scanning electron microscopy and light microscopy for the study of fungi interactions. Microscopy Research and Technique, 74(3), 207-211. doi:10.1002/jemt.20893 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 03.- Garantizar una vida saludable y promover el bienestar para todos y todas en todas las edades es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem