- -

Preconditioners for nonsymmetric linear systems with low-rank skew-symmetric part

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Preconditioners for nonsymmetric linear systems with low-rank skew-symmetric part

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cerdán Soriano, Juana Mercedes es_ES
dc.contributor.author Guerrero-Flores, Danny Joel es_ES
dc.contributor.author Marín Mateos-Aparicio, José es_ES
dc.contributor.author Mas Marí, José es_ES
dc.date.accessioned 2021-03-26T04:30:58Z
dc.date.available 2021-03-26T04:30:58Z
dc.date.issued 2018-12-01 es_ES
dc.identifier.issn 0377-0427 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164417
dc.description.abstract [EN] We present a preconditioning technique for solving nonsymmetric linear systems Ax = b, where the coefficient matrix A has a skew-symmetric part that can be well approximated with a skew-symmetric low-rank matrix. The method consists of updating a preconditioner obtained from the symmetric part of A. We present some results concerning to the approximation properties of the preconditioner and the spectral properties of the preconditioning technique. The results of the numerical experiments performed show that our strategy is competitive compared with some specific methods. (C) 2018 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Economia y Competitividad under grants MTM2014-58159-P and MTM2015-68805-REDT. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Computational and Applied Mathematics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Iterative methods es_ES
dc.subject Skew-symmetric matrices es_ES
dc.subject Sparse linear systems es_ES
dc.subject Preconditioning es_ES
dc.subject Low-rank update es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.title Preconditioners for nonsymmetric linear systems with low-rank skew-symmetric part es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cam.2018.04.023 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//MTM2015-68805-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Cerdán Soriano, JM.; Guerrero-Flores, DJ.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2018). Preconditioners for nonsymmetric linear systems with low-rank skew-symmetric part. Journal of Computational and Applied Mathematics. 343:318-327. https://doi.org/10.1016/j.cam.2018.04.023 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cam.2018.04.023 es_ES
dc.description.upvformatpinicio 318 es_ES
dc.description.upvformatpfin 327 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 343 es_ES
dc.relation.pasarela S\426195 es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references J. Sifuentes, Preconditioned iterative methods for inhomogeneous acoustic scattering applications (Ph.D. thesis), 2010. es_ES
dc.description.references Beckermann, B., & Reichel, L. (2008). The Arnoldi Process and GMRES for Nearly Symmetric Matrices. SIAM Journal on Matrix Analysis and Applications, 30(1), 102-120. doi:10.1137/060668274 es_ES
dc.description.references Embree, M., Sifuentes, J. A., Soodhalter, K. M., Szyld, D. B., & Xue, F. (2012). Short-Term Recurrence Krylov Subspace Methods for Nearly Hermitian Matrices. SIAM Journal on Matrix Analysis and Applications, 33(2), 480-500. doi:10.1137/110851006 es_ES
dc.description.references Saad, Y., & Schultz, M. H. (1986). GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 7(3), 856-869. doi:10.1137/0907058 es_ES
dc.description.references Cerdán, J., Marín, J., & Mas, J. (2016). Low-rank updates of balanced incomplete factorization preconditioners. Numerical Algorithms, 74(2), 337-370. doi:10.1007/s11075-016-0151-6 es_ES
dc.description.references Van der Vorst, H. A. (1992). Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13(2), 631-644. doi:10.1137/0913035 es_ES
dc.description.references Bergamaschi, L., Gondzio, J., Venturin, M., & Zilli, G. (2007). Inexact constraint preconditioners for linear systems arising in interior point methods. Computational Optimization and Applications, 36(2-3), 137-147. doi:10.1007/s10589-006-9001-0 es_ES
dc.description.references Davis, T. A., & Hu, Y. (2011). The university of Florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1), 1-25. doi:10.1145/2049662.2049663 es_ES
dc.description.references Berry, M. W., Pulatova, S. A., & Stewart, G. W. (2005). Algorithm 844. ACM Transactions on Mathematical Software, 31(2), 252-269. doi:10.1145/1067967.1067972 es_ES
dc.description.references Stewart, G. W. (1999). Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix. Numerische Mathematik, 83(2), 313-323. doi:10.1007/s002110050451 es_ES
dc.description.references Saad, Y. (1994). ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with Applications, 1(4), 387-402. doi:10.1002/nla.1680010405 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem