Mostrar el registro sencillo del ítem
dc.contributor.author | Cerdán Soriano, Juana Mercedes | es_ES |
dc.contributor.author | Guerrero-Flores, Danny Joel | es_ES |
dc.contributor.author | Marín Mateos-Aparicio, José | es_ES |
dc.contributor.author | Mas Marí, José | es_ES |
dc.date.accessioned | 2021-03-26T04:30:58Z | |
dc.date.available | 2021-03-26T04:30:58Z | |
dc.date.issued | 2018-12-01 | es_ES |
dc.identifier.issn | 0377-0427 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164417 | |
dc.description.abstract | [EN] We present a preconditioning technique for solving nonsymmetric linear systems Ax = b, where the coefficient matrix A has a skew-symmetric part that can be well approximated with a skew-symmetric low-rank matrix. The method consists of updating a preconditioner obtained from the symmetric part of A. We present some results concerning to the approximation properties of the preconditioner and the spectral properties of the preconditioning technique. The results of the numerical experiments performed show that our strategy is competitive compared with some specific methods. (C) 2018 Elsevier B.V. All rights reserved. | es_ES |
dc.description.sponsorship | This work was supported by the Spanish Ministerio de Economia y Competitividad under grants MTM2014-58159-P and MTM2015-68805-REDT. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Iterative methods | es_ES |
dc.subject | Skew-symmetric matrices | es_ES |
dc.subject | Sparse linear systems | es_ES |
dc.subject | Preconditioning | es_ES |
dc.subject | Low-rank update | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.title | Preconditioners for nonsymmetric linear systems with low-rank skew-symmetric part | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.cam.2018.04.023 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2014-58159-P/ES/PRECONDICIONADORES PARA SISTEMAS DE ECUACIONES LINEALES, PROBLEMAS DE MINIMOS CUADRADOS, CALCULO DE VALORES PROPIOS Y APLICACIONES TECNOLOGICAS/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//MTM2015-68805-REDT/ES/RED TEMATICA DE ALGEBRA LINEAL, ANALISIS MATRICIAL Y APLICACIONES/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Cerdán Soriano, JM.; Guerrero-Flores, DJ.; Marín Mateos-Aparicio, J.; Mas Marí, J. (2018). Preconditioners for nonsymmetric linear systems with low-rank skew-symmetric part. Journal of Computational and Applied Mathematics. 343:318-327. https://doi.org/10.1016/j.cam.2018.04.023 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.cam.2018.04.023 | es_ES |
dc.description.upvformatpinicio | 318 | es_ES |
dc.description.upvformatpfin | 327 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 343 | es_ES |
dc.relation.pasarela | S\426195 | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.description.references | J. Sifuentes, Preconditioned iterative methods for inhomogeneous acoustic scattering applications (Ph.D. thesis), 2010. | es_ES |
dc.description.references | Beckermann, B., & Reichel, L. (2008). The Arnoldi Process and GMRES for Nearly Symmetric Matrices. SIAM Journal on Matrix Analysis and Applications, 30(1), 102-120. doi:10.1137/060668274 | es_ES |
dc.description.references | Embree, M., Sifuentes, J. A., Soodhalter, K. M., Szyld, D. B., & Xue, F. (2012). Short-Term Recurrence Krylov Subspace Methods for Nearly Hermitian Matrices. SIAM Journal on Matrix Analysis and Applications, 33(2), 480-500. doi:10.1137/110851006 | es_ES |
dc.description.references | Saad, Y., & Schultz, M. H. (1986). GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 7(3), 856-869. doi:10.1137/0907058 | es_ES |
dc.description.references | Cerdán, J., Marín, J., & Mas, J. (2016). Low-rank updates of balanced incomplete factorization preconditioners. Numerical Algorithms, 74(2), 337-370. doi:10.1007/s11075-016-0151-6 | es_ES |
dc.description.references | Van der Vorst, H. A. (1992). Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM Journal on Scientific and Statistical Computing, 13(2), 631-644. doi:10.1137/0913035 | es_ES |
dc.description.references | Bergamaschi, L., Gondzio, J., Venturin, M., & Zilli, G. (2007). Inexact constraint preconditioners for linear systems arising in interior point methods. Computational Optimization and Applications, 36(2-3), 137-147. doi:10.1007/s10589-006-9001-0 | es_ES |
dc.description.references | Davis, T. A., & Hu, Y. (2011). The university of Florida sparse matrix collection. ACM Transactions on Mathematical Software, 38(1), 1-25. doi:10.1145/2049662.2049663 | es_ES |
dc.description.references | Berry, M. W., Pulatova, S. A., & Stewart, G. W. (2005). Algorithm 844. ACM Transactions on Mathematical Software, 31(2), 252-269. doi:10.1145/1067967.1067972 | es_ES |
dc.description.references | Stewart, G. W. (1999). Four algorithms for the the efficient computation of truncated pivoted QR approximations to a sparse matrix. Numerische Mathematik, 83(2), 313-323. doi:10.1007/s002110050451 | es_ES |
dc.description.references | Saad, Y. (1994). ILUT: A dual threshold incomplete LU factorization. Numerical Linear Algebra with Applications, 1(4), 387-402. doi:10.1002/nla.1680010405 | es_ES |