Mostrar el registro sencillo del ítem
dc.contributor.author | Marín, D. | es_ES |
dc.contributor.author | Armengol Fortí, Josep | es_ES |
dc.contributor.author | Carbonell-Bejerano, P. | es_ES |
dc.contributor.author | Escalona, J.M. | es_ES |
dc.contributor.author | Gramaje Pérez, David | es_ES |
dc.contributor.author | Hernández-Montes, E. | es_ES |
dc.contributor.author | INTRIGLIOLO, DIEGO SEBASTIANO | es_ES |
dc.contributor.author | Martínez-Zapater, J.M. | es_ES |
dc.contributor.author | Medrano, H. | es_ES |
dc.contributor.author | Mirás Ávalos, J.M. | es_ES |
dc.contributor.author | Palomares-Rius, J.E. | es_ES |
dc.contributor.author | Romero-Azorín, P. | es_ES |
dc.contributor.author | Savé, R. | es_ES |
dc.contributor.author | Santesteban, L.G. | es_ES |
dc.contributor.author | De Herralde, F. | es_ES |
dc.date.accessioned | 2021-03-26T04:31:04Z | |
dc.date.available | 2021-03-26T04:31:04Z | |
dc.date.issued | 2021-01 | es_ES |
dc.identifier.issn | 1322-7130 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164419 | |
dc.description.abstract | [EN] Viticulture is facing emerging challenges not only because of the effect of climate change on yield and composition of grapes, but also of a social demand for environmental-friendly agricultural management. Adaptation to these challenges is essential to guarantee the sustainability of viticulture. The aim of this review is to present adaptation possibilities from the soil-hidden, and often disregarded, part of the grapevine, the roots. The complexity of soil-root interactions makes necessary a comprehensive approach taking into account physiology, pathology and genetics, in order to outline strategies to improve viticulture adaptation to current and future threats. Rootstocks are the link between soil and scion in grafted crops, and they have played an essential role in viticulture since the introduction of phylloxera into Europe at the end of the 19th century. This review outlines current and future challenges that are threatening the sustainability of the wine sector and the relevant role that rootstocks can play to face these threats. We describe how rootstocks along with soil management can be exploited as an essential tool to deal with the effects of climate change and of emerging soil-borne pests and pathogens. Moreover, we discuss the possibilities and limitations of diverse genetic strategies for rootstock breeding. | es_ES |
dc.description.sponsorship | This work is framed in the networking activities of RedVitis (AGL2015-70931-REDT) and RedVitis 2.0 (AGL2017-90759-REDT), funded by the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation. Ms Diana Marin is beneficiary of postgraduate scholarship funded by Universidad Publica de Navarra (FPI-UPNA-2016). Dr Juan Emilio Palomares-Rius acknowledges the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation for the 'Ramon y Cajal' Fellowship RYC-2017-22228 and Dr David Gramaje acknowledges Spanish Ministry of Economy and Competitiveness for the 'Ramon y Cajal' Fellowship RYC-2017-23098. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Australian Journal of Grape and Wine Research | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Climate change | es_ES |
dc.subject | Genetics | es_ES |
dc.subject | Rootstock | es_ES |
dc.subject | Sustainability | es_ES |
dc.subject | Vitis | es_ES |
dc.subject.classification | PRODUCCION VEGETAL | es_ES |
dc.title | Challenges of viticulture adaptation to global change: tackling the issue from the roots | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/ajgw.12463 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/MINECO//AGL2015-70931-REDT/ES/RED DE INVESTIGACION EN VITICULTURA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//AGL2017-90759-REDT/ES/NUEVOS AVANCES EN VITICULTURA/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RYC-2017-22228/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI//RYC-2017-23098/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani | es_ES |
dc.description.bibliographicCitation | Marín, D.; Armengol Fortí, J.; Carbonell-Bejerano, P.; Escalona, J.; Gramaje Pérez, D.; Hernández-Montes, E.; Intrigliolo, DS.... (2021). Challenges of viticulture adaptation to global change: tackling the issue from the roots. Australian Journal of Grape and Wine Research. 27(1):8-25. https://doi.org/10.1111/ajgw.12463 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/ajgw.12463 | es_ES |
dc.description.upvformatpinicio | 8 | es_ES |
dc.description.upvformatpfin | 25 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 27 | es_ES |
dc.description.issue | 1 | es_ES |
dc.relation.pasarela | S\424647 | es_ES |
dc.contributor.funder | Universidad Pública de Navarra | es_ES |
dc.contributor.funder | Ministerio de Economía y Competitividad | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | AGÜERO, C. B., URATSU, S. L., GREVE, C., POWELL, A. L. T., LABAVITCH, J. M., MEREDITH, C. P., & DANDEKAR, A. M. (2005). Evaluation of tolerance to Pierce’s disease andBotrytisin transgenic plants ofVitis viniferaL. expressing the pear PGIP gene. Molecular Plant Pathology, 6(1), 43-51. doi:10.1111/j.1364-3703.2004.00262.x | es_ES |
dc.description.references | Agustí-Brisach, C., Mostert, L., & Armengol, J. (2013). Detection and quantification ofIlyonectriaspp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316-322. doi:10.1111/ppa.12093 | es_ES |
dc.description.references | Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013). Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137(1), 103-112. doi:10.1007/s10658-013-0221-8 | es_ES |
dc.description.references | Alaniz, S., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2010). Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125(3), 305-308. doi:10.1016/j.scienta.2010.04.009 | es_ES |
dc.description.references | Alaniz, S., Armengol, J., León, M., García-Jiménez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113(1), 16-23. doi:10.1016/j.mycres.2008.07.002 | es_ES |
dc.description.references | Albacete, A., Martinez-Andujar, C., Martinez-Perez, A., Thompson, A. J., Dodd, I. C., & Perez-Alfocea, F. (2015). Unravelling rootstockxscion interactions to improve food security. Journal of Experimental Botany, 66(8), 2211-2226. doi:10.1093/jxb/erv027 | es_ES |
dc.description.references | Aragüés, R., Medina, E. T., Zribi, W., Clavería, I., Álvaro-Fuentes, J., & Faci, J. (2014). Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrigation Science, 33(1), 67-79. doi:10.1007/s00271-014-0449-x | es_ES |
dc.description.references | Barrios-Masias, F. H., Knipfer, T., Walker, M. A., & McElrone, A. J. (2019). Differences in hydraulic traits of grapevine rootstocks are not conferred to a common Vitis vinifera scion. Functional Plant Biology, 46(3), 228. doi:10.1071/fp18110 | es_ES |
dc.description.references | Bavaresco, L., Gardiman, M., Brancadoro, L., Espen, L., Failla, O., Scienza, A., … Testolin, R. (2015). Grapevine breeding programs in Italy. Grapevine Breeding Programs for the Wine Industry, 135-157. doi:10.1016/b978-1-78242-075-0.00007-7 | es_ES |
dc.description.references | Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., … Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2(1). doi:10.1038/hortres.2015.12 | es_ES |
dc.description.references | Bert, P.-F., Bordenave, L., Donnart, M., Hévin, C., Ollat, N., & Decroocq, S. (2012). Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theoretical and Applied Genetics, 126(2), 451-473. doi:10.1007/s00122-012-1993-5 | es_ES |
dc.description.references | Bianchi, D., Grossi, D., Tincani, D. T. G., Simone Di Lorenzo, G., Brancadoro, L., & Rustioni, L. (2018). Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiology and Biochemistry, 132, 333-340. doi:10.1016/j.plaphy.2018.09.018 | es_ES |
dc.description.references | Bonada, M., Jeffery, D. W., Petrie, P. R., Moran, M. A., & Sadras, V. O. (2015). Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Australian Journal of Grape and Wine Research, 21(2), 240-253. doi:10.1111/ajgw.12142 | es_ES |
dc.description.references | Borie, B., Jacquiot, L., Jamaux-Despréaux, I., Larignon, P., & Péros, J.-P. (2002). Genetic diversity in populations of the fungiPhaeomoniella chlamydosporaandPhaeoacremonium aleophilumon grapevine in France. Plant Pathology, 51(1), 85-96. doi:10.1046/j.0032-0862.2001.658.x | es_ES |
dc.description.references | Bravdo, B. (2012). EFFECTS OF SALINITY AND IRRIGATION WITH DESALINATED EFFLUENT AND SEA WATER ON PRODUCTION AND FRUIT QUALITY OF GRAPEVINES (REVIEW AND UPDATE). Acta Horticulturae, (931), 245-258. doi:10.17660/actahortic.2012.931.27 | es_ES |
dc.description.references | Brown, D. S., Jaspers, M. V., Ridgway, H. J., Barclay, C. J., & Jones, E. E. (2013). Susceptibility of four grapevine rootstocks to Cylindrocladiella parva. New Zealand Plant Protection, 66, 249-253. doi:10.30843/nzpp.2013.66.5675 | es_ES |
dc.description.references | Brunori, E., Farina, R., & Biasi, R. (2016). Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agriculture, Ecosystems & Environment, 223, 10-21. doi:10.1016/j.agee.2016.02.012 | es_ES |
dc.description.references | Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116(1), 62-80. doi:10.1016/j.funbio.2011.09.010 | es_ES |
dc.description.references | Carbonell-Bejerano, P., Santa María, E., Torres-Pérez, R., Royo, C., Lijavetzky, D., Bravo, G., … Martínez-Zapater, J. M. (2013). Thermotolerance Responses in Ripening Berries of Vitis vinifera L. cv Muscat Hamburg. Plant and Cell Physiology, 54(7), 1200-1216. doi:10.1093/pcp/pct071 | es_ES |
dc.description.references | Carneiro, R., Randig, O., Almeida, M. R., & Gomes, A. C. (2004). Additional information on Meloidogyne ethiopica Whitehead, 1968 (Tylenchida: Meloidogynidae), a root-knot nematode parasitising kiwi fruit and grape-vine from Brazil and Chile. Nematology, 6(1), 109-123. doi:10.1163/156854104323072982 | es_ES |
dc.description.references | Castellarin, S. D., Matthews, M. A., Di Gaspero, G., & Gambetta, G. A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227(1), 101-112. doi:10.1007/s00425-007-0598-8 | es_ES |
dc.description.references | Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57-78. doi:10.3114/sim.2011.68.03 | es_ES |
dc.description.references | Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., … Lopes, C. M. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105(5), 661-676. doi:10.1093/aob/mcq030 | es_ES |
dc.description.references | Chitarra, W., Perrone, I., Avanzato, C. G., Minio, A., Boccacci, P., Santini, D., … Gambino, G. (2017). Grapevine Grafting: Scion Transcript Profiling and Defense-Related Metabolites Induced by Rootstocks. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00654 | es_ES |
dc.description.references | Clark, J. R., & Finn, C. E. (2010). Register of New Fruit and Nut Cultivars List 45. HortScience, 45(5), 716-756. doi:10.21273/hortsci.45.5.716 | es_ES |
dc.description.references | Clingeleffer, P., Morales, N., Davis, H., & Smith, H. (2019). The significance of scion × rootstock interactions. OENO One, 53(2). doi:10.20870/oeno-one.2019.53.2.2438 | es_ES |
dc.description.references | COMAS, L. H., BAUERLE, T. L., & EISSENSTAT, D. M. (2010). Biological and environmental factors controlling root dynamics and function: effects of root ageing and soil moisture. Australian Journal of Grape and Wine Research, 16, 131-137. doi:10.1111/j.1755-0238.2009.00078.x | es_ES |
dc.description.references | Comas, L. H., Anderson, L. J., Dunst, R. M., Lakso, A. N., & Eissenstat, D. M. (2005). Canopy and environmental control of root dynamics in a long‐term study of Concord grape. New Phytologist, 167(3), 829-840. doi:10.1111/j.1469-8137.2005.01456.x | es_ES |
dc.description.references | Comont, G., Corio-Costet, M.-F., Larignon, P., & Delmotte, F. (2010). AFLP markers reveal two genetic groups in the French population of the grapevine fungal pathogen Phaeomoniella chlamydospora. European Journal of Plant Pathology, 127(4), 451-464. doi:10.1007/s10658-010-9611-3 | es_ES |
dc.description.references | Corso, M., & Bonghi, C. (2014). Grapevine rootstock effects on abiotic stress tolerance. Plant Science Today, 1(3), 108-113. doi:10.14719/pst.2014.1.3.64 | es_ES |
dc.description.references | Corso, M., Vannozzi, A., Maza, E., Vitulo, N., Meggio, F., Pitacco, A., … Lucchin, M. (2015). Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. Journal of Experimental Botany, 66(19), 5739-5752. doi:10.1093/jxb/erv274 | es_ES |
dc.description.references | Costa, J. M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M. M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management, 164, 5-18. doi:10.1016/j.agwat.2015.08.021 | es_ES |
dc.description.references | Cousins, P. (2005). Rootstock Breeding: An Analysis of Intractability. HortScience, 40(7), 1945-1946. doi:10.21273/hortsci.40.7.1945 | es_ES |
dc.description.references | Cramer W. Guiot J.andMarini K.(2019)MedECC booklet: risks associated to climate and environmental changes in the Mediterranean region. A preliminary assessment by the MedECC Network Science‐policy interface.https://www.medecc.org/wp-content/uploads/2018/12/MedECC-Booklet_EN_WEB.pdf | es_ES |
dc.description.references | Cummins, J. N., & Aldwinckle, H. S. (1995). Breeding rootstocks for tree fruit crops. New Zealand Journal of Crop and Horticultural Science, 23(4), 395-402. doi:10.1080/01140671.1995.9513915 | es_ES |
dc.description.references | Davies, W. J., Kudoyarova, G., & Hartung, W. (2005). Long-distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. Journal of Plant Growth Regulation, 24(4). doi:10.1007/s00344-005-0103-1 | es_ES |
dc.description.references | Degu, A., Morcia, C., Tumino, G., Hochberg, U., Toubiana, D., Mattivi, F., … Fait, A. (2015). Metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes. Plant Physiology and Biochemistry, 86, 24-33. doi:10.1016/j.plaphy.2014.11.006 | es_ES |
dc.description.references | Delrot, S., Grimplet, J., Carbonell-Bejerano, P., Schwandner, A., Bert, P.-F., Bavaresco, L., … Vezzulli, S. (2020). Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change. Genomic Designing of Climate-Smart Fruit Crops, 157-270. doi:10.1007/978-3-319-97946-5_7 | es_ES |
dc.description.references | Demangeat, G., Voisin, R., Minot, J.-C., Bosselut, N., Fuchs, M., & Esmenjaud, D. (2005). Survival of Xiphinema index in Vineyard Soil and Retention of Grapevine fanleaf virus Over Extended Time in the Absence of Host Plants. Phytopathology®, 95(10), 1151-1156. doi:10.1094/phyto-95-1151 | es_ES |
dc.description.references | Downton, W. (1977). Photosynthesis in Salt-Stressed Grapevines. Functional Plant Biology, 4(2), 183. doi:10.1071/pp9770183 | es_ES |
dc.description.references | Dutt, M., Li, Z. T., Kelley, K. T., Dhekney, S. A., Van Aman, M., Tattersall, J., & Gray, D. J. (2007). TRANSGENIC ROOTSTOCK PROTEIN TRANSMISSION IN GRAPEVINES. Acta Horticulturae, (738), 749-754. doi:10.17660/actahortic.2007.738.99 | es_ES |
dc.description.references | Eissenstat, D. M., Bauerle, T. L., Comas, L. H., Lakso, A. N., Neilsen, D., Neilsen, G. H., & Smart, D. R. (2006). SEASONAL PATTERNS OF ROOT GROWTH IN RELATION TO SHOOT PHENOLOGY IN GRAPE AND APPLE. Acta Horticulturae, (721), 21-26. doi:10.17660/actahortic.2006.721.1 | es_ES |
dc.description.references | ESCALONA, J. M., TOMÀS, M., MARTORELL, S., MEDRANO, H., RIBAS-CARBO, M., & FLEXAS, J. (2012). Carbon balance in grapevines under different soil water supply: importance of whole plant respiration. Australian Journal of Grape and Wine Research, 18(3), 308-318. doi:10.1111/j.1755-0238.2012.00193.x | es_ES |
dc.description.references | Esmenjaud, D., & Bouquet, A. (2009). Selection and Application of Resistant Germplasm for Grapevine Nematodes Management. Integrated Management of Fruit Crops Nematodes, 195-214. doi:10.1007/978-1-4020-9858-1_8 | es_ES |
dc.description.references | Fahrentrapp, J., Müller, L., & Schumacher, P. (2015). Is there need for leaf-galling grape phylloxera control? Presence and distribution ofDactulosphaira vitifoliaein Swiss vineyards. International Journal of Pest Management, 61(4), 340-345. doi:10.1080/09670874.2015.1067734 | es_ES |
dc.description.references | FLEXAS, J., GALMÃ S, J., GALLÃ , A., GULÃ AS, J., POU, A., RIBAS-CARBO, M., … MEDRANO, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16, 106-121. doi:10.1111/j.1755-0238.2009.00057.x | es_ES |
dc.description.references | Fort, K. P., Heinitz, C. C., & Walker, M. A. (2015). Chloride exclusion patterns in six grapevine populations. Australian Journal of Grape and Wine Research, 21(1), 147-155. doi:10.1111/ajgw.12125 | es_ES |
dc.description.references | Foundation Plant Services(2020) Grape Variery: RS‐2. Grape program at Foundation Plant Services.https://fps.ucdavis.edu/ | es_ES |
dc.description.references | Fraga, H., Malheiro, A. C., Moutinho‐Pereira, J., & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94-110. doi:10.1002/fes3.14 | es_ES |
dc.description.references | Franck, N., Morales, J. P., Arancibia‐Avendaño, D., García de Cortázar, V., Perez‐Quezada, J. F., Zurita‐Silva, A., & Pastenes, C. (2011). Seasonal fluctuations in Vitis vinifera root respiration in the field. New Phytologist, 192(4), 939-951. doi:10.1111/j.1469-8137.2011.03860.x | es_ES |
dc.description.references | Fu, Q., Tan, Y., Zhai, H., & Du, Y. (2019). Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks. Scientia Horticulturae, 243, 148-158. doi:10.1016/j.scienta.2018.07.034 | es_ES |
dc.description.references | Funes, I., Savé, R., Rovira, P., Molowny-Horas, R., Alcañiz, J. M., Ascaso, E., … Vayreda, J. (2019). Agricultural soil organic carbon stocks in the north-eastern Iberian Peninsula: Drivers and spatial variability. Science of The Total Environment, 668, 283-294. doi:10.1016/j.scitotenv.2019.02.317 | es_ES |
dc.description.references | Galbignani, M., Merli, M. C., Magnanini, E., Bernizzoni, F., Talaverano, I., Gatti, M., … Poni, S. (2016). Gas exchange and water-use efficiency of cv. Sangiovese grafted to rootstocks of varying water-deficit tolerance. Irrigation Science, 34(2), 105-116. doi:10.1007/s00271-016-0490-z | es_ES |
dc.description.references | Gambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., … McElrone, A. J. (2012). The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? Journal of Experimental Botany, 63(18), 6445-6455. doi:10.1093/jxb/ers312 | es_ES |
dc.description.references | Geier, T., Eimert, K., Scherer, R., & Nickel, C. (2008). Production and rooting behaviour of rolB-transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri × V. rupestris). Plant Cell, Tissue and Organ Culture, 94(3), 269-280. doi:10.1007/s11240-008-9352-6 | es_ES |
dc.description.references | Girollet, N., Rubio, B., Lopez-Roques, C., Valière, S., Ollat, N., & Bert, P.-F. (2019). De novo phased assembly of the Vitis riparia grape genome. Scientific Data, 6(1). doi:10.1038/s41597-019-0133-3 | es_ES |
dc.description.references | Gómez, J., Lasanta, C., Palacios-Santander, J. M., & Cubillana-Aguilera, L. M. (2015). Chemical modeling for pH prediction of acidified musts with gypsum and tartaric acid in warm regions. Food Chemistry, 168, 218-224. doi:10.1016/j.foodchem.2014.07.058 | es_ES |
dc.description.references | Gong, H., Blackmore, D., Clingeleffer, P., Sykes, S., Jha, D., Tester, M., & Walker, R. (2010). Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny. Journal of Experimental Botany, 62(3), 989-999. doi:10.1093/jxb/erq326 | es_ES |
dc.description.references | Gramaje, D., & Armengol, J. (2011). Fungal Trunk Pathogens in the Grapevine Propagation Process: Potential Inoculum Sources, Detection, Identification, and Management Strategies. Plant Disease, 95(9), 1040-1055. doi:10.1094/pdis-01-11-0025 | es_ES |
dc.description.references | Gramaje, D., Armengol, J., & Ridgway, H. J. (2012). Genetic and virulence diversity, and mating type distribution of Togninia minima causing grapevine trunk diseases in Spain. European Journal of Plant Pathology, 135(4), 727-743. doi:10.1007/s10658-012-0110-6 | es_ES |
dc.description.references | Gramaje, D., García-Jiménez, J., & Armengol, J. (2010). Field Evaluation of Grapevine Rootstocks Inoculated with Fungi Associated with Petri Disease and Esca. American Journal of Enology and Viticulture, 61(4), 512-520. doi:10.5344/ajev.2010.10021 | es_ES |
dc.description.references | Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102(1), 12-39. doi:10.1094/pdis-04-17-0512-fe | es_ES |
dc.description.references | Gramaje, D., Mostert, L., Groenewald, J. Z., & Crous, P. W. (2015). Phaeoacremonium: From esca disease to phaeohyphomycosis. Fungal Biology, 119(9), 759-783. doi:10.1016/j.funbio.2015.06.004 | es_ES |
dc.description.references | Gramaje, D., León, M., Santana, M., Crous, P. W., & Armengol, J. (2014). Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea. PLoS ONE, 9(10), e110417. doi:10.1371/journal.pone.0110417 | es_ES |
dc.description.references | Granett, J., Walker, M. A., Kocsis, L., & Omer, A. D. (2001). BIOLOGY AND MANAGEMENT OF GRAPE PHYLLOXERA. Annual Review of Entomology, 46(1), 387-412. doi:10.1146/annurev.ento.46.1.387 | es_ES |
dc.description.references | Gubler, W. D., Baumgartner, K., Browne, G. T., Eskalen, A., Latham, S. R., Petit, E., & Bayramian, L. A. (2004). Root diseases of grapevines in California and their control. Australasian Plant Pathology, 33(2), 157. doi:10.1071/ap04019 | es_ES |
dc.description.references | Gullo, G., Dattola, A., Vonella, V., & Zappia, R. (2018). Evaluation of water relation parameters in vitis rootstocks with different drought tolerance and their effects on growth of a grafted cultivar. Journal of Plant Physiology, 226, 172-178. doi:10.1016/j.jplph.2018.04.013 | es_ES |
dc.description.references | Haider, M. S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., & Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. doi:10.1016/j.envexpbot.2019.03.022 | es_ES |
dc.description.references | Hajdu, E. (2015). Grapevine breeding in Hungary. Grapevine Breeding Programs for the Wine Industry, 103-134. doi:10.1016/b978-1-78242-075-0.00006-5 | es_ES |
dc.description.references | Harbertson, J. F., & Keller, M. (2011). Rootstock Effects on Deficit-Irrigated Winegrapes in a Dry Climate: Grape and Wine Composition. American Journal of Enology and Viticulture, 63(1), 40-48. doi:10.5344/ajev.2011.11079 | es_ES |
dc.description.references | Haywood, V., Yu, T.-S., Huang, N.-C., & Lucas, W. J. (2005). Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. The Plant Journal, 42(1), 49-68. doi:10.1111/j.1365-313x.2005.02351.x | es_ES |
dc.description.references | He, F., Mu, L., Yan, G.-L., Liang, N.-N., Pan, Q.-H., Wang, J., … Duan, C.-Q. (2010). Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules, 15(12), 9057-9091. doi:10.3390/molecules15129057 | es_ES |
dc.description.references | He, R., Zhuang, Y., Cai, Y., Agüero, C. B., Liu, S., Wu, J., … Zhang, Y. (2018). Overexpression of 9-cis-Epoxycarotenoid Dioxygenase Cisgene in Grapevine Increases Drought Tolerance and Results in Pleiotropic Effects. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00970 | es_ES |
dc.description.references | Heinitz, C. C., Riaz, S., Tenscher, A. C., Romero, N., & Walker, M. A. (2020). Survey of chloride exclusion in grape germplasm from the southwestern United States and Mexico. Crop Science, 60(4), 1946-1956. doi:10.1002/csc2.20085 | es_ES |
dc.description.references | Hemmer, C., Djennane, S., Ackerer, L., Hleibieh, K., Marmonier, A., Gersch, S., … Ritzenthaler, C. (2017). Nanobody-mediated resistance to Grapevine fanleaf virus in plants. Plant Biotechnology Journal, 16(2), 660-671. doi:10.1111/pbi.12819 | es_ES |
dc.description.references | Henderson, S. W., Baumann, U., Blackmore, D. H., Walker, A. R., Walker, R. R., & Gilliham, M. (2014). Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0273-8 | es_ES |
dc.description.references | Henderson, S. W., Dunlevy, J. D., Wu, Y., Blackmore, D. H., Walker, R. R., Edwards, E. J., … Walker, A. R. (2017). Functional differences in transport properties of natural HKT 1;1 variants influence shoot Na + exclusion in grapevine rootstocks. New Phytologist, 217(3), 1113-1127. doi:10.1111/nph.14888 | es_ES |
dc.description.references | Hernández-Montes, E., Escalona, J. M., Tomás, M., & Medrano, H. (2017). Influence of water availability and grapevine phenological stage on the spatial variation in soil respiration. Australian Journal of Grape and Wine Research, 23(2), 273-279. doi:10.1111/ajgw.12279 | es_ES |
dc.description.references | De Herralde, F., Savé, R., Aranda, X., & Biel, C. (2010). Grapevine Roots and Soil Environment: Growth, Distribution and Function. Methodologies and Results in Grapevine Research, 1-20. doi:10.1007/978-90-481-9283-0_1 | es_ES |
dc.description.references | Hirzel, D. R., Steenwerth, K., Parikh, S. J., & Oberholster, A. (2017). Impact of winery wastewater irrigation on soil, grape and wine composition. Agricultural Water Management, 180, 178-189. doi:10.1016/j.agwat.2016.10.019 | es_ES |
dc.description.references | Holtgräwe, D., Rosleff Soerensen, T., Hausmann, L., Pucker, B., Viehöver, P., Töpfer, R., & Weisshaar, B. (2020). A Partially Phase-Separated Genome Sequence Assembly of the Vitis Rootstock ‘Börner’ (Vitis riparia × Vitis cinerea) and Its Exploitation for Marker Development and Targeted Mapping. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00156 | es_ES |
dc.description.references | Huang, X., Lakso, A. N., & Eissenstat, D. M. (2005). Interactive effects of soil temperature and moisture on Concord grape root respiration. Journal of Experimental Botany, 56(420), 2651-2660. doi:10.1093/jxb/eri258 | es_ES |
dc.description.references | Hwang, C.-F., Xu, K., Hu, R., Zhou, R., Riaz, S., & Walker, M. A. (2010). Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape. Theoretical and Applied Genetics, 121(4), 789-799. doi:10.1007/s00122-010-1349-y | es_ES |
dc.description.references | Hyma, K. E., Barba, P., Wang, M., Londo, J. P., Acharya, C. B., Mitchell, S. E., … Cadle-Davidson, L. (2015). Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine. PLOS ONE, 10(8), e0134880. doi:10.1371/journal.pone.0134880 | es_ES |
dc.description.references | Intergovernmental Panel on Climate Change. (2014). Climate Change 2014 Mitigation of Climate Change. doi:10.1017/cbo9781107415416 | es_ES |
dc.description.references | Intrieri, C., Filippetti, I., Allegro, G., Valentini, G., & Pastore, C. (2016). ‘Star 50’ and ‘Star 74’: new dwarfing grape rootstocks. Acta Horticulturae, (1136), 23-26. doi:10.17660/actahortic.2016.1136.3 | es_ES |
dc.description.references | Jelly, N. S., Schellenbaum, P., Walter, B., & Maillot, P. (2012). Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Research, 21(6), 1319-1327. doi:10.1007/s11248-012-9611-5 | es_ES |
dc.description.references | Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate Change and Global Wine Quality. Climatic Change, 73(3), 319-343. doi:10.1007/s10584-005-4704-2 | es_ES |
dc.description.references | JONES, T. H., CULLIS, B. R., CLINGELEFFER, P. R., & RÜHL, E. H. (2009). Effects of novel hybrid and traditional rootstocks on vigour and yield components of Shiraz grapevines. Australian Journal of Grape and Wine Research, 15(3), 284-292. doi:10.1111/j.1755-0238.2009.00061.x | es_ES |
dc.description.references | KELLER, M. (2010). Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Australian Journal of Grape and Wine Research, 16, 56-69. doi:10.1111/j.1755-0238.2009.00077.x | es_ES |
dc.description.references | Kidman, C. M., Olarte Mantilla, S., Dry, P. R., McCarthy, M. G., & Collins, C. (2013). Effect of Water Stress on the Reproductive Performance of Shiraz (Vitis vinifera L.) Grafted to Rootstocks. American Journal of Enology and Viticulture, 65(1), 96-108. doi:10.5344/ajev.2013.13069 | es_ES |
dc.description.references | Kocsis, L., Tarczal, E., & Molnár Kocsisné, G. (2016). Grape rootstock-scion interaction on root system development. Acta Horticulturae, (1136), 27-32. doi:10.17660/actahortic.2016.1136.4 | es_ES |
dc.description.references | KODUR, S., TISDALL, J. M., TANG, C., & WALKER, R. R. (2009). Accumulation of potassium in grapevine rootstocks (Vitis) as affected by dry matter partitioning, root traits and transpiration. Australian Journal of Grape and Wine Research, 16(2), 273-282. doi:10.1111/j.1755-0238.2009.00088.x | es_ES |
dc.description.references | Koundouras, S., Tsialtas, I. T., Zioziou, E., & Nikolaou, N. (2008). Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet–Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agriculture, Ecosystems & Environment, 128(1-2), 86-96. doi:10.1016/j.agee.2008.05.006 | es_ES |
dc.description.references | Lambert, C., Bisson, J., Waffo-Téguo, P., Papastamoulis, Y., Richard, T., Corio-Costet, M.-F., … Cluzet, S. (2012). Phenolics and Their Antifungal Role in Grapevine Wood Decay: Focus on the Botryosphaeriaceae Family. Journal of Agricultural and Food Chemistry, 60(48), 11859-11868. doi:10.1021/jf303290g | es_ES |
dc.description.references | Liang, Z., Duan, S., Sheng, J., Zhu, S., Ni, X., Shao, J., … Dong, Y. (2019). Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nature Communications, 10(1). doi:10.1038/s41467-019-09135-8 | es_ES |
dc.description.references | Loureiro, M. D., Moreno-Sanz, P., García, A., Fernández, O., Fernández, N., & Suárez, B. (2016). Influence of rootstock on the performance of the Albarín Negro minority grapevine cultivar. Scientia Horticulturae, 201, 145-152. doi:10.1016/j.scienta.2016.01.023 | es_ES |
dc.description.references | Lovisolo, C., Lavoie-Lamoureux, A., Tramontini, S., & Ferrandino, A. (2016). Grapevine adaptations to water stress: new perspectives about soil/plant interactions. Theoretical and Experimental Plant Physiology, 28(1), 53-66. doi:10.1007/s40626-016-0057-7 | es_ES |
dc.description.references | Lovisolo, C., Tramontini, S., Flexas, J., & Schubert, A. (2008). Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environmental and Experimental Botany, 63(1-3), 178-182. doi:10.1016/j.envexpbot.2007.11.005 | es_ES |
dc.description.references | Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C., & Ollat, N. (2012). Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytologist, 194(2), 416-429. doi:10.1111/j.1469-8137.2012.04059.x | es_ES |
dc.description.references | Martín, L., Sáenz de Miera, L. E., & Martín, M. T. (2013). AFLP and RAPD Characterization of Phaeoacremonium aleophilum Associated with Vitis vinifera Decline in Spain. Journal of Phytopathology, 162(4), 245-257. doi:10.1111/jph.12180 | es_ES |
dc.description.references | Martins, V., Cunha, A., Gerós, H., Hanana, M., & Blumwald, E. (Eds.). (2012). Mineral Compounds in the Grape Berry. The Biochemistry of the Grape Berry, 23-43. doi:10.2174/978160805360511201010023 | es_ES |
dc.description.references | Maurel, C., Simonneau, T., & Sutka, M. (2010). The significance of roots as hydraulic rheostats. Journal of Experimental Botany, 61(12), 3191-3198. doi:10.1093/jxb/erq150 | es_ES |
dc.description.references | Medrano, H., Tomás, M., Martorell, S., Escalona, J.-M., Pou, A., Fuentes, S., … Bota, J. (2014). Improving water use efficiency of vineyards in semi-arid regions. A review. Agronomy for Sustainable Development, 35(2), 499-517. doi:10.1007/s13593-014-0280-z | es_ES |
dc.description.references | Meggio, F., Prinsi, B., Negri, A. S., Simone Di Lorenzo, G., Lucchini, G., Pitacco, A., … Espen, L. (2014). Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20(2), 310-323. doi:10.1111/ajgw.12071 | es_ES |
dc.description.references | Merli, M. C., Magnanini, E., Gatti, M., Pirez, F. J., Pueyo, I. B., Intrigliolo, D. S., & Poni, S. (2016). Water stress improves whole-canopy water use efficiency and berry composition of cv. Sangiovese ( Vitis vinifera L.) grapevines grafted on the new drought-tolerant rootstock M4. Agricultural Water Management, 169, 106-114. doi:10.1016/j.agwat.2016.02.025 | es_ES |
dc.description.references | Mira de Orduña, R. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43(7), 1844-1855. doi:10.1016/j.foodres.2010.05.001 | es_ES |
dc.description.references | Moens, M., Perry, R. N., & Starr, J. L. (s. f.). Meloidogyne species - a diverse group of novel and important plant parasites. Root-knot nematodes, 1-17. doi:10.1079/9781845934927.0001 | es_ES |
dc.description.references | Morinaga, K., Imai, S., Yakushiji, H., & Koshita, Y. (2003). Effects of fruit load on partitioning of and , respiration, and growth of grapevine roots at different fruit stages. Scientia Horticulturae, 97(3-4), 239-253. doi:10.1016/s0304-4238(02)00199-1 | es_ES |
dc.description.references | Mudge, K., Janick, J., Scofield, S., & Goldschmidt, E. E. (2009). A History of Grafting. Horticultural Reviews, 437-493. doi:10.1002/9780470593776.ch9 | es_ES |
dc.description.references | Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663. doi:10.1111/j.1469-8137.2005.01487.x | es_ES |
dc.description.references | Neethling, E., Petitjean, T., Quénol, H., & Barbeau, G. (2016). Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitigation and Adaptation Strategies for Global Change, 22(5), 777-803. doi:10.1007/s11027-015-9698-0 | es_ES |
dc.description.references | NICOL, J. M., STIRLING, G. R., ROSE, B. J., MAY, P., & HEESWIJCK, R. (1999). Impact of nematodes on grapevine growth and productivity: current knowledge and future directions, with special reference to Australian viticulture. Australian Journal of Grape and Wine Research, 5(3), 109-127. doi:10.1111/j.1755-0238.1999.tb00295.x | es_ES |
dc.description.references | Ollat, N., Peccoux, A., Papura, D., Esmenjaud, D., Marguerit, E., Tandonnet, J.-P., … Delrot, S. (2016). Rootstocks as a component of adaptation to environment. Grapevine in a Changing Environment, 68-108. doi:10.1002/9781118735985.ch4 | es_ES |
dc.description.references | Padgett-Johnson, M., Williams, L. E., & Walker, M. A. (2003). Vine Water Relations, Gas Exchange, and Vegetative Growth of Seventeen Vitis Species Grown under Irrigated and Nonirrigated Conditions in California. Journal of the American Society for Horticultural Science, 128(2), 269-276. doi:10.21273/jashs.128.2.0269 | es_ES |
dc.description.references | Peccoux, A., Loveys, B., Zhu, J., Gambetta, G. A., Delrot, S., Vivin, P., … Dai, Z. (2017). Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology, 38(7), 1026-1040. doi:10.1093/treephys/tpx153 | es_ES |
dc.description.references | Phogat, V., Cox, J. W., & Šimůnek, J. (2018). Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia. Agricultural Water Management, 201, 107-117. doi:10.1016/j.agwat.2018.01.025 | es_ES |
dc.description.references | Pl@ntGrape(2020)Catalogue of vines cultivated in France IFV—INRAE—l'Institut Agro Montpellier SupAgro 2009–2020.http://plantgrape.plantnet-project.org/en/ | es_ES |
dc.description.references | Porro, D., Pedò, S., Bertoldi, D., Bortolotti, L., Failla, O., & Zamboni, M. (2013). EVALUATION OF NEW ROOTSTOCKS FOR GRAPEVINE: NUTRITIONAL ASPECTS. Acta Horticulturae, (984), 109-115. doi:10.17660/actahortic.2013.984.9 | es_ES |
dc.description.references | Pouzoulet, J., Scudiero, E., Schiavon, M., & Rolshausen, P. E. (2017). Xylem Vessel Diameter Affects the Compartmentalization of the Vascular Pathogen Phaeomoniella chlamydospora in Grapevine. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01442 | es_ES |
dc.description.references | Powell, K. S., Cooper, P. D., & Forneck, A. (2013). The Biology, Physiology and Host–Plant Interactions of Grape Phylloxera Daktulosphaira vitifoliae. Behaviour and Physiology of Root Herbivores, 159-218. doi:10.1016/b978-0-12-417165-7.00004-0 | es_ES |
dc.description.references | Prinsi, B., Failla, O., Scienza, A., & Espen, L. (2020). Root Proteomic Analysis of Two Grapevine Rootstock Genotypes Showing Different Susceptibility to Salt Stress. International Journal of Molecular Sciences, 21(3), 1076. doi:10.3390/ijms21031076 | es_ES |
dc.description.references | Pulko, B., Vršič, S., & Valdhuber, J. (2012). Influence of various rootstocks on the yield and grape composition of Sauvignon Blanc. Czech Journal of Food Sciences, 30(No. 5), 467-473. doi:10.17221/347/2011-cjfs | es_ES |
dc.description.references | Goheen, A. C., Raski, D. J., Taylor, R. H., Hewitt, W. B., & Taylor, C. E. (1965). Survival of Xiphinema Index and Reservoirs of Fanleaf Virus in Fallowed Vineyard Soil. Nematologica, 11(3), 349-352. doi:10.1163/187529265x00267 | es_ES |
dc.description.references | Reisch, B. I., Owens, C. L., & Cousins, P. S. (2011). Grape. Fruit Breeding, 225-262. doi:10.1007/978-1-4419-0763-9_7 | es_ES |
dc.description.references | Riaz, S., Pap, D., Uretsky, J., Laucou, V., Boursiquot, J.-M., Kocsis, L., & Andrew Walker, M. (2019). Genetic diversity and parentage analysis of grape rootstocks. Theoretical and Applied Genetics, 132(6), 1847-1860. doi:10.1007/s00122-019-03320-5 | es_ES |
dc.description.references | Rolshausen, P. E., Greve, L. C., Labavitch, J. M., Mahoney, N. E., Molyneux, R. J., & Gubler, W. D. (2008). Pathogenesis of Eutypa lata in Grapevine: Identification of Virulence Factors and Biochemical Characterization of Cordon Dieback. Phytopathology®, 98(2), 222-229. doi:10.1094/phyto-98-2-0222 | es_ES |
dc.description.references | Romero, P., Botía, P., & Navarro, J. M. (2018). Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agricultural Water Management, 209, 73-93. doi:10.1016/j.agwat.2018.07.012 | es_ES |
dc.description.references | Romero, P., Dodd, I. C., & Martinez-Cutillas, A. (2012). Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability. Journal of Experimental Botany, 63(11), 4071-4083. doi:10.1093/jxb/ers088 | es_ES |
dc.description.references | Rossdeutsch, L., Edwards, E., Cookson, S. J., Barrieu, F., Gambetta, G. A., Delrot, S., & Ollat, N. (2016). ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0778-4 | es_ES |
dc.description.references | Rubio, B., Lalanne-Tisné, G., Voisin, R., Tandonnet, J.-P., Portier, U., Van Ghelder, C., … Esmenjaud, D. (2020). Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dagger nematode Xiphinema index from muscadine background. BMC Plant Biology, 20(1). doi:10.1186/s12870-020-2310-0 | es_ES |
dc.description.references | Ruhl, E. (1989). Uptake and distribution of potassium by grapevine rootstocks and its implication for grape juice pH of scion varieties. Australian Journal of Experimental Agriculture, 29(5), 707. doi:10.1071/ea9890707 | es_ES |
dc.description.references | Rühl E.H.(1996)‘Borner’ rootstock grape. US Patent: Plant 9575. | es_ES |
dc.description.references | Rühl, E. H. (2000). EFFECT OF ROOTSTOCKS AND K+ SUPPLY ON PH AND ACIDITY OF GRAPE JUICE. Acta Horticulturae, (512), 31-38. doi:10.17660/actahortic.2000.512.3 | es_ES |
dc.description.references | Sabir, A., & Sahin, Z. (2018). The Response of Soilless Grown ‘Michele Palieri’ (Vitis vinifera L.) Grapevine Cultivar to Deficit Irrigation Under the Effects of Different Rootstocks. Erwerbs-Obstbau, 60(S1), 21-27. doi:10.1007/s10341-018-0378-6 | es_ES |
dc.description.references | Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L.-T., Correia, C., … Schultz, H. R. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences, 10(9), 3092. doi:10.3390/app10093092 | es_ES |
dc.description.references | Saucet, S. B., Van Ghelder, C., Abad, P., Duval, H., & Esmenjaud, D. (2016). Resistance to root‐knot nematodes Meloidogyne spp. in woody plants. New Phytologist, 211(1), 41-56. doi:10.1111/nph.13933 | es_ES |
dc.description.references | Schreiner, R. P. (2005). Spatial and Temporal Variation of Roots, Arbuscular Mycorrhizal Fungi, and Plant and Soil Nutrients in a Mature Pinot Noir (Vitis vinifera L.) Vineyard in Oregon, USA. Plant and Soil, 276(1-2), 219-234. doi:10.1007/s11104-005-4895-0 | es_ES |
dc.description.references | SCHULTZ, H. R., & STOLL, M. (2010). Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Australian Journal of Grape and Wine Research, 16, 4-24. doi:10.1111/j.1755-0238.2009.00074.x | es_ES |
dc.description.references | Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2013). Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 20(1), 1-14. doi:10.1111/ajgw.12054 | es_ES |
dc.description.references | Smith, B. P., Wheal, M. S., Jones, T. H., Morales, N. B., & Clingeleffer, P. R. (2012). Heritability of adventitious rooting of grapevine dormant canes. Tree Genetics & Genomes, 9(2), 467-474. doi:10.1007/s11295-012-0570-z | es_ES |
dc.description.references | Smith, H. M., Smith, B. P., Morales, N. B., Moskwa, S., Clingeleffer, P. R., & Thomas, M. R. (2018). SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLOS ONE, 13(2), e0193121. doi:10.1371/journal.pone.0193121 | es_ES |
dc.description.references | Smith, H. M., Clarke, C. W., Smith, B. P., Carmody, B. M., Thomas, M. R., Clingeleffer, P. R., & Powell, K. S. (2018). Genetic identification of SNP markers linked to a new grape phylloxera resistant locus in Vitis cinerea for marker-assisted selection. BMC Plant Biology, 18(1). doi:10.1186/s12870-018-1590-0 | es_ES |
dc.description.references | SOAR, C. J., DRY, P. R., & LOVEYS, B. R. (2006). Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: Mediation of rootstock effects via xylem sap ABA. Australian Journal of Grape and Wine Research, 12(2), 82-96. doi:10.1111/j.1755-0238.2006.tb00047.x | es_ES |
dc.description.references | STEVENS, R. M., PECH, J. M., GIBBERD, M. R., WALKER, R. R., & NICHOLAS, P. R. (2010). Reduced irrigation and rootstock effects on vegetative growth, yield and its components, and leaf physiological responses of Shiraz. Australian Journal of Grape and Wine Research, 16(3), 413-425. doi:10.1111/j.1755-0238.2010.00102.x | es_ES |
dc.description.references | Stevens, R. M., Pech, J. M., Taylor, J., Clingeleffer, P., Walker, R. R., & Nicholas, P. R. (2015). Effects of irrigation and rootstock on V itis vinifera (L.) cv. Shiraz berry composition and shrivel, and wine composition and wine score. Australian Journal of Grape and Wine Research, 22(1), 124-136. doi:10.1111/ajgw.12163 | es_ES |
dc.description.references | STEVENS, R. M., PECH, J. M., GIBBERD, M. R., WALKER, R. R., JONES, J. A., TAYLOR, J., & NICHOLAS, P. R. (2008). Effect of reduced irrigation on growth, yield, ripening rates and water relations of Chardonnay vines grafted to five rootstocks. Australian Journal of Grape and Wine Research, ???-??? doi:10.1111/j.1755-0238.2008.00018.x | es_ES |
dc.description.references | Tandonnet, J.-P., Marguerit, E., Cookson, S. J., & Ollat, N. (2018). Genetic architecture of aerial and root traits in field-grown grafted grapevines is largely independent. Theoretical and Applied Genetics, 131(4), 903-915. doi:10.1007/s00122-017-3046-6 | es_ES |
dc.description.references | Teixeira, A., Eiras-Dias, J., Castellarin, S., & Gerós, H. (2013). Berry Phenolics of Grapevine under Challenging Environments. International Journal of Molecular Sciences, 14(9), 18711-18739. doi:10.3390/ijms140918711 | es_ES |
dc.description.references | Téliz, D., Landa, B. B., Rapoport, H. F., Camacho, F. P., Jiménez-Díaz, R. M., & Castillo, P. (2007). Plant-Parasitic Nematodes Infecting Grapevine in Southern Spain and Susceptible Reaction to Root-Knot Nematodes of Rootstocks Reported as Moderately Resistant. Plant Disease, 91(9), 1147-1154. doi:10.1094/pdis-91-9-1147 | es_ES |
dc.description.references | Teubes A.(2014)History of rootstocks in South Africa (part 5). Wineland Magazine.https://www.wineland.co.za/history-of-rootstocks-in-south-africa-part-5/ | es_ES |
dc.description.references | Tramontini, S., Vitali, M., Centioni, L., Schubert, A., & Lovisolo, C. (2013). Rootstock control of scion response to water stress in grapevine. Environmental and Experimental Botany, 93, 20-26. doi:10.1016/j.envexpbot.2013.04.001 | es_ES |
dc.description.references | Van Leeuwen, C., & Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11(1), 150-167. doi:10.1017/jwe.2015.21 | es_ES |
dc.description.references | Van Leeuwen, C., & Destrac-Irvine, A. (2017). Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One, 51(2), 147-154. doi:10.20870/oeno-one.2017.51.2.1647 | es_ES |
dc.description.references | van Leeuwen, Destrac-Irvine, Dubernet, Duchêne, Gowdy, Marguerit, … Ollat. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9(9), 514. doi:10.3390/agronomy9090514 | es_ES |
dc.description.references | Vigne, E., Komar, V., & Fuchs, M. (2004). Field Safety Assessment of Recombination in Transgenic Grapevines Expressing the Coat Protein Gene of Grapevine fanleaf virus. Transgenic Research, 13(2), 165-179. doi:10.1023/b:trag.0000026075.79097.c9 | es_ES |
dc.description.references | Villate, L., Morin, E., Demangeat, G., Van Helden, M., & Esmenjaud, D. (2012). Control of Xiphinema index Populations by Fallow Plants Under Greenhouse and Field Conditions. Phytopathology®, 102(6), 627-634. doi:10.1094/phyto-01-12-0007 | es_ES |
dc.description.references | Volder, A., Smart, D. R., Bloom, A. J., & Eissenstat, D. M. (2004). Rapid decline in nitrate uptake and respiration with age in fine lateral roots of grape: implications for root efficiency and competitive effectiveness. New Phytologist, 165(2), 493-502. doi:10.1111/j.1469-8137.2004.01222.x | es_ES |
dc.description.references | WALKER, R. R., BLACKMORE, D. H., & CLINGELEFFER, P. R. (2010). Impact of rootstock on yield and ion concentrations in petioles, juice and wine of Shiraz and Chardonnay in different viticultural environments with different irrigation water salinity. Australian Journal of Grape and Wine Research, 16(1), 243-257. doi:10.1111/j.1755-0238.2009.00081.x | es_ES |
dc.description.references | WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., & CORRELL, R. L. (2002). Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana).: 1. Yield and vigour inter-relationships. Australian Journal of Grape and Wine Research, 8(1), 3-14. doi:10.1111/j.1755-0238.2002.tb00206.x | es_ES |
dc.description.references | Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., & Emanuelli, D. (2014). Rootstock type determines tolerance of Chardonnay and Shiraz to long-term saline irrigation. Australian Journal of Grape and Wine Research, 20(3), 496-506. doi:10.1111/ajgw.12094 | es_ES |
dc.description.references | WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., & IACONO, F. (1997). Effect of salinity and Ramsey rootstock on ion concentrations and carbon dioxide assimilation in leaves of drip-irrigated, field-grown grapevines (Vitis vinifera L. cv. Sultana). Australian Journal of Grape and Wine Research, 3(2), 66-74. doi:10.1111/j.1755-0238.1997.tb00117.x | es_ES |
dc.description.references | Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., Holt, H., Pearson, W., & Francis, I. L. (2019). Effect of rootstock on yield, grape composition and wine sensory attributes of Shiraz grown in a moderately saline environment. Australian Journal of Grape and Wine Research, 25(4), 414-429. doi:10.1111/ajgw.12409 | es_ES |
dc.description.references | Walker, R. R., Blackmore, D. H., Gong, H., Henderson, S. W., Gilliham, M., & Walker, A. R. (2018). Analysis of the salt exclusion phenotype in rooted leaves of grapevine (Vitis spp.). Australian Journal of Grape and Wine Research, 24(3), 317-326. doi:10.1111/ajgw.12334 | es_ES |
dc.description.references | Wallis, C. M., Wallingford, A. K., & Chen, J. (2013). Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00502 | es_ES |
dc.description.references | Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J. B., & Miller, A. J. (2016). Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends in Plant Science, 21(5), 418-437. doi:10.1016/j.tplants.2015.11.008 | es_ES |
dc.description.references | Webster, A. D. (2001). ROOTSTOCKS FOR TEMPERATE FRUIT CROPS: CURRENT USES, FUTURE POTENTIAL AND ALTERNATIVE STRATEGIES. Acta Horticulturae, (557), 25-34. doi:10.17660/actahortic.2001.557.1 | es_ES |
dc.description.references | Wheeler S.F.(2006)The role of abscisic acid in grape berry development. PhD Thesis School of Agriculture and Wine Discipline of Horticulture Viticulture and Oenology in collaboration with CSIRO Plant Industry Horticulture Unit The University of Adelaide Adelaide SA Australia.https://digital.library.adelaide.edu.au/dspace/bitstream/2440/57767/8/02whole.pdf | es_ES |
dc.description.references | WILLIAMS, L. E. (2010). Interaction of rootstock and applied water amounts at various fractions of estimated evapotranspiration (ETc) on productivity of Cabernet Sauvignon. Australian Journal of Grape and Wine Research, 16(3), 434-444. doi:10.1111/j.1755-0238.2010.00104.x | es_ES |
dc.description.references | Wyss, U. (2014). Xiphinema index, Maintenance and Feeding in Monoxenic Cultures. Rearing Animal and Plant Pathogen Vectors, 235-267. doi:10.1201/b16804-14 | es_ES |
dc.description.references | Xu, K., Riaz, S., Roncoroni, N. C., Jin, Y., Hu, R., Zhou, R., & Walker, M. A. (2007). Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theoretical and Applied Genetics, 116(2), 305-311. doi:10.1007/s00122-007-0670-6 | es_ES |
dc.description.references | Yang, Y., Jittayasothorn, Y., Chronis, D., Wang, X., Cousins, P., & Zhong, G.-Y. (2013). Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root-Knot Nematode Infection in Transgenic Grape Hairy Roots. PLoS ONE, 8(7), e69463. doi:10.1371/journal.pone.0069463 | es_ES |
dc.description.references | Yin, L., Clark, M. D., Burkness, E. C., & Hutchison, W. D. (2019). Grape Phylloxera (Hemiptera: Phylloxeridae), on Cold-Hardy Hybrid Wine Grapes (Vitis spp.): A Review of Pest Biology, Damage, and Management Practices. Journal of Integrated Pest Management, 10(1). doi:10.1093/jipm/pmz011 | es_ES |
dc.description.references | Yıldırım, K., Yağcı, A., Sucu, S., & Tunç, S. (2018). Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiology and Biochemistry, 127, 256-268. doi:10.1016/j.plaphy.2018.03.034 | es_ES |
dc.description.references | Zhang, J., Hausmann, L., Eibach, R., Welter, L. J., Töpfer, R., & Zyprian, E. M. (2009). A framework map from grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) × rootstock cultivar ‘Börner’ (Vitis riparia × Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theoretical and Applied Genetics, 119(6), 1039-1051. doi:10.1007/s00122-009-1107-1 | es_ES |
dc.description.references | Zhang, L., Marguerit, E., Rossdeutsch, L., Ollat, N., & Gambetta, G. A. (2016). The influence of grapevine rootstocks on scion growth and drought resistance. Theoretical and Experimental Plant Physiology, 28(2), 143-157. doi:10.1007/s40626-016-0070-x | es_ES |
dc.description.references | ZHANG, X., WALKER, R. R., STEVENS, R. M., & PRIOR, L. D. (2002). Yield-salinity relationships of different grapevine (Vitis vinifera L.) scion-rootstock combinations. Australian Journal of Grape and Wine Research, 8(3), 150-156. doi:10.1111/j.1755-0238.2002.tb00250.x | es_ES |
dc.description.references | Zhou, Y., Minio, A., Massonnet, M., Solares, E., Lv, Y., Beridze, T., … Gaut, B. S. (2019). The population genetics of structural variants in grapevine domestication. Nature Plants, 5(9), 965-979. doi:10.1038/s41477-019-0507-8 | es_ES |
dc.description.references | Zohary, D., & Spiegel-Roy, P. (1975). Beginnings of Fruit Growing in the Old World. Science, 187(4174), 319-327. doi:10.1126/science.187.4174.319 | es_ES |
dc.description.references | Zou, C., Karn, A., Reisch, B., Nguyen, A., Sun, Y., Bao, Y., … Cadle-Davidson, L. (2020). Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus. Nature Communications, 11(1). doi:10.1038/s41467-019-14280-1 | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |