- -

Challenges of viticulture adaptation to global change: tackling the issue from the roots

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Challenges of viticulture adaptation to global change: tackling the issue from the roots

Show simple item record

Files in this item

dc.contributor.author Marín, D. es_ES
dc.contributor.author Armengol Fortí, Josep es_ES
dc.contributor.author Carbonell-Bejerano, P. es_ES
dc.contributor.author Escalona, J.M. es_ES
dc.contributor.author Gramaje Pérez, David es_ES
dc.contributor.author Hernández-Montes, E. es_ES
dc.contributor.author INTRIGLIOLO, DIEGO SEBASTIANO es_ES
dc.contributor.author Martínez-Zapater, J.M. es_ES
dc.contributor.author Medrano, H. es_ES
dc.contributor.author Mirás Ávalos, J.M. es_ES
dc.contributor.author Palomares-Rius, J.E. es_ES
dc.contributor.author Romero-Azorín, P. es_ES
dc.contributor.author Savé, R. es_ES
dc.contributor.author Santesteban, L.G. es_ES
dc.contributor.author De Herralde, F. es_ES
dc.date.accessioned 2021-03-26T04:31:04Z
dc.date.available 2021-03-26T04:31:04Z
dc.date.issued 2021-01 es_ES
dc.identifier.issn 1322-7130 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164419
dc.description.abstract [EN] Viticulture is facing emerging challenges not only because of the effect of climate change on yield and composition of grapes, but also of a social demand for environmental-friendly agricultural management. Adaptation to these challenges is essential to guarantee the sustainability of viticulture. The aim of this review is to present adaptation possibilities from the soil-hidden, and often disregarded, part of the grapevine, the roots. The complexity of soil-root interactions makes necessary a comprehensive approach taking into account physiology, pathology and genetics, in order to outline strategies to improve viticulture adaptation to current and future threats. Rootstocks are the link between soil and scion in grafted crops, and they have played an essential role in viticulture since the introduction of phylloxera into Europe at the end of the 19th century. This review outlines current and future challenges that are threatening the sustainability of the wine sector and the relevant role that rootstocks can play to face these threats. We describe how rootstocks along with soil management can be exploited as an essential tool to deal with the effects of climate change and of emerging soil-borne pests and pathogens. Moreover, we discuss the possibilities and limitations of diverse genetic strategies for rootstock breeding. es_ES
dc.description.sponsorship This work is framed in the networking activities of RedVitis (AGL2015-70931-REDT) and RedVitis 2.0 (AGL2017-90759-REDT), funded by the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation. Ms Diana Marin is beneficiary of postgraduate scholarship funded by Universidad Publica de Navarra (FPI-UPNA-2016). Dr Juan Emilio Palomares-Rius acknowledges the State Research Agency (AEI) of the Spanish Ministry of Science and Innovation for the 'Ramon y Cajal' Fellowship RYC-2017-22228 and Dr David Gramaje acknowledges Spanish Ministry of Economy and Competitiveness for the 'Ramon y Cajal' Fellowship RYC-2017-23098. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Australian Journal of Grape and Wine Research es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Climate change es_ES
dc.subject Genetics es_ES
dc.subject Rootstock es_ES
dc.subject Sustainability es_ES
dc.subject Vitis es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Challenges of viticulture adaptation to global change: tackling the issue from the roots es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/ajgw.12463 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2015-70931-REDT/ES/RED DE INVESTIGACION EN VITICULTURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//AGL2017-90759-REDT/ES/NUEVOS AVANCES EN VITICULTURA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RYC-2017-22228/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//RYC-2017-23098/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.description.bibliographicCitation Marín, D.; Armengol Fortí, J.; Carbonell-Bejerano, P.; Escalona, J.; Gramaje Pérez, D.; Hernández-Montes, E.; Intrigliolo, DS.... (2021). Challenges of viticulture adaptation to global change: tackling the issue from the roots. Australian Journal of Grape and Wine Research. 27(1):8-25. https://doi.org/10.1111/ajgw.12463 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/ajgw.12463 es_ES
dc.description.upvformatpinicio 8 es_ES
dc.description.upvformatpfin 25 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 27 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\424647 es_ES
dc.contributor.funder Universidad Pública de Navarra es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references AGÜERO, C. B., URATSU, S. L., GREVE, C., POWELL, A. L. T., LABAVITCH, J. M., MEREDITH, C. P., & DANDEKAR, A. M. (2005). Evaluation of tolerance to Pierce’s disease andBotrytisin transgenic plants ofVitis viniferaL. expressing the pear PGIP gene. Molecular Plant Pathology, 6(1), 43-51. doi:10.1111/j.1364-3703.2004.00262.x es_ES
dc.description.references Agustí-Brisach, C., Mostert, L., & Armengol, J. (2013). Detection and quantification ofIlyonectriaspp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316-322. doi:10.1111/ppa.12093 es_ES
dc.description.references Agustí-Brisach, C., Gramaje, D., García-Jiménez, J., & Armengol, J. (2013). Detection of black-foot disease pathogens in the grapevine nursery propagation process in Spain. European Journal of Plant Pathology, 137(1), 103-112. doi:10.1007/s10658-013-0221-8 es_ES
dc.description.references Alaniz, S., García-Jiménez, J., Abad-Campos, P., & Armengol, J. (2010). Susceptibility of grapevine rootstocks to Cylindrocarpon liriodendri and C. macrodidymum. Scientia Horticulturae, 125(3), 305-308. doi:10.1016/j.scienta.2010.04.009 es_ES
dc.description.references Alaniz, S., Armengol, J., León, M., García-Jiménez, J., & Abad-Campos, P. (2009). Analysis of genetic and virulence diversity of Cylindrocarpon liriodendri and C. macrodidymum associated with black foot disease of grapevine. Mycological Research, 113(1), 16-23. doi:10.1016/j.mycres.2008.07.002 es_ES
dc.description.references Albacete, A., Martinez-Andujar, C., Martinez-Perez, A., Thompson, A. J., Dodd, I. C., & Perez-Alfocea, F. (2015). Unravelling rootstockxscion interactions to improve food security. Journal of Experimental Botany, 66(8), 2211-2226. doi:10.1093/jxb/erv027 es_ES
dc.description.references Aragüés, R., Medina, E. T., Zribi, W., Clavería, I., Álvaro-Fuentes, J., & Faci, J. (2014). Soil salinization as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrigation Science, 33(1), 67-79. doi:10.1007/s00271-014-0449-x es_ES
dc.description.references Barrios-Masias, F. H., Knipfer, T., Walker, M. A., & McElrone, A. J. (2019). Differences in hydraulic traits of grapevine rootstocks are not conferred to a common Vitis vinifera scion. Functional Plant Biology, 46(3), 228. doi:10.1071/fp18110 es_ES
dc.description.references Bavaresco, L., Gardiman, M., Brancadoro, L., Espen, L., Failla, O., Scienza, A., … Testolin, R. (2015). Grapevine breeding programs in Italy. Grapevine Breeding Programs for the Wine Industry, 135-157. doi:10.1016/b978-1-78242-075-0.00007-7 es_ES
dc.description.references Berdeja, M., Nicolas, P., Kappel, C., Dai, Z. W., Hilbert, G., Peccoux, A., … Delrot, S. (2015). Water limitation and rootstock genotype interact to alter grape berry metabolism through transcriptome reprogramming. Horticulture Research, 2(1). doi:10.1038/hortres.2015.12 es_ES
dc.description.references Bert, P.-F., Bordenave, L., Donnart, M., Hévin, C., Ollat, N., & Decroocq, S. (2012). Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.). Theoretical and Applied Genetics, 126(2), 451-473. doi:10.1007/s00122-012-1993-5 es_ES
dc.description.references Bianchi, D., Grossi, D., Tincani, D. T. G., Simone Di Lorenzo, G., Brancadoro, L., & Rustioni, L. (2018). Multi-parameter characterization of water stress tolerance in Vitis hybrids for new rootstock selection. Plant Physiology and Biochemistry, 132, 333-340. doi:10.1016/j.plaphy.2018.09.018 es_ES
dc.description.references Bonada, M., Jeffery, D. W., Petrie, P. R., Moran, M. A., & Sadras, V. O. (2015). Impact of elevated temperature and water deficit on the chemical and sensory profiles of Barossa Shiraz grapes and wines. Australian Journal of Grape and Wine Research, 21(2), 240-253. doi:10.1111/ajgw.12142 es_ES
dc.description.references Borie, B., Jacquiot, L., Jamaux-Despréaux, I., Larignon, P., & Péros, J.-P. (2002). Genetic diversity in populations of the fungiPhaeomoniella chlamydosporaandPhaeoacremonium aleophilumon grapevine in France. Plant Pathology, 51(1), 85-96. doi:10.1046/j.0032-0862.2001.658.x es_ES
dc.description.references Bravdo, B. (2012). EFFECTS OF SALINITY AND IRRIGATION WITH DESALINATED EFFLUENT AND SEA WATER ON PRODUCTION AND FRUIT QUALITY OF GRAPEVINES (REVIEW AND UPDATE). Acta Horticulturae, (931), 245-258. doi:10.17660/actahortic.2012.931.27 es_ES
dc.description.references Brown, D. S., Jaspers, M. V., Ridgway, H. J., Barclay, C. J., & Jones, E. E. (2013). Susceptibility of four grapevine rootstocks to Cylindrocladiella parva. New Zealand Plant Protection, 66, 249-253. doi:10.30843/nzpp.2013.66.5675 es_ES
dc.description.references Brunori, E., Farina, R., & Biasi, R. (2016). Sustainable viticulture: The carbon-sink function of the vineyard agro-ecosystem. Agriculture, Ecosystems & Environment, 223, 10-21. doi:10.1016/j.agee.2016.02.012 es_ES
dc.description.references Cabral, A., Rego, C., Nascimento, T., Oliveira, H., Groenewald, J. Z., & Crous, P. W. (2012). Multi-gene analysis and morphology reveal novel Ilyonectria species associated with black foot disease of grapevines. Fungal Biology, 116(1), 62-80. doi:10.1016/j.funbio.2011.09.010 es_ES
dc.description.references Carbonell-Bejerano, P., Santa María, E., Torres-Pérez, R., Royo, C., Lijavetzky, D., Bravo, G., … Martínez-Zapater, J. M. (2013). Thermotolerance Responses in Ripening Berries of Vitis vinifera L. cv Muscat Hamburg. Plant and Cell Physiology, 54(7), 1200-1216. doi:10.1093/pcp/pct071 es_ES
dc.description.references Carneiro, R., Randig, O., Almeida, M. R., & Gomes, A. C. (2004). Additional information on Meloidogyne ethiopica Whitehead, 1968 (Tylenchida: Meloidogynidae), a root-knot nematode parasitising kiwi fruit and grape-vine from Brazil and Chile. Nematology, 6(1), 109-123. doi:10.1163/156854104323072982 es_ES
dc.description.references Castellarin, S. D., Matthews, M. A., Di Gaspero, G., & Gambetta, G. A. (2007). Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries. Planta, 227(1), 101-112. doi:10.1007/s00425-007-0598-8 es_ES
dc.description.references Chaverri, P., Salgado, C., Hirooka, Y., Rossman, A. Y., & Samuels, G. J. (2011). Delimitation of Neonectria and Cylindrocarpon (Nectriaceae, Hypocreales, Ascomycota) and related genera with Cylindrocarpon-like anamorphs. Studies in Mycology, 68, 57-78. doi:10.3114/sim.2011.68.03 es_ES
dc.description.references Chaves, M. M., Zarrouk, O., Francisco, R., Costa, J. M., Santos, T., Regalado, A. P., … Lopes, C. M. (2010). Grapevine under deficit irrigation: hints from physiological and molecular data. Annals of Botany, 105(5), 661-676. doi:10.1093/aob/mcq030 es_ES
dc.description.references Chitarra, W., Perrone, I., Avanzato, C. G., Minio, A., Boccacci, P., Santini, D., … Gambino, G. (2017). Grapevine Grafting: Scion Transcript Profiling and Defense-Related Metabolites Induced by Rootstocks. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.00654 es_ES
dc.description.references Clark, J. R., & Finn, C. E. (2010). Register of New Fruit and Nut Cultivars List 45. HortScience, 45(5), 716-756. doi:10.21273/hortsci.45.5.716 es_ES
dc.description.references Clingeleffer, P., Morales, N., Davis, H., & Smith, H. (2019). The significance of scion × rootstock interactions. OENO One, 53(2). doi:10.20870/oeno-one.2019.53.2.2438 es_ES
dc.description.references COMAS, L. H., BAUERLE, T. L., & EISSENSTAT, D. M. (2010). Biological and environmental factors controlling root dynamics and function: effects of root ageing and soil moisture. Australian Journal of Grape and Wine Research, 16, 131-137. doi:10.1111/j.1755-0238.2009.00078.x es_ES
dc.description.references Comas, L. H., Anderson, L. J., Dunst, R. M., Lakso, A. N., & Eissenstat, D. M. (2005). Canopy and environmental control of root dynamics in a long‐term study of Concord grape. New Phytologist, 167(3), 829-840. doi:10.1111/j.1469-8137.2005.01456.x es_ES
dc.description.references Comont, G., Corio-Costet, M.-F., Larignon, P., & Delmotte, F. (2010). AFLP markers reveal two genetic groups in the French population of the grapevine fungal pathogen Phaeomoniella chlamydospora. European Journal of Plant Pathology, 127(4), 451-464. doi:10.1007/s10658-010-9611-3 es_ES
dc.description.references Corso, M., & Bonghi, C. (2014). Grapevine rootstock effects on abiotic stress tolerance. Plant Science Today, 1(3), 108-113. doi:10.14719/pst.2014.1.3.64 es_ES
dc.description.references Corso, M., Vannozzi, A., Maza, E., Vitulo, N., Meggio, F., Pitacco, A., … Lucchin, M. (2015). Comprehensive transcript profiling of two grapevine rootstock genotypes contrasting in drought susceptibility links the phenylpropanoid pathway to enhanced tolerance. Journal of Experimental Botany, 66(19), 5739-5752. doi:10.1093/jxb/erv274 es_ES
dc.description.references Costa, J. M., Vaz, M., Escalona, J., Egipto, R., Lopes, C., Medrano, H., & Chaves, M. M. (2016). Modern viticulture in southern Europe: Vulnerabilities and strategies for adaptation to water scarcity. Agricultural Water Management, 164, 5-18. doi:10.1016/j.agwat.2015.08.021 es_ES
dc.description.references Cousins, P. (2005). Rootstock Breeding: An Analysis of Intractability. HortScience, 40(7), 1945-1946. doi:10.21273/hortsci.40.7.1945 es_ES
dc.description.references Cramer W. Guiot J.andMarini K.(2019)MedECC booklet: risks associated to climate and environmental changes in the Mediterranean region. A preliminary assessment by the MedECC Network Science‐policy interface.https://www.medecc.org/wp-content/uploads/2018/12/MedECC-Booklet_EN_WEB.pdf es_ES
dc.description.references Cummins, J. N., & Aldwinckle, H. S. (1995). Breeding rootstocks for tree fruit crops. New Zealand Journal of Crop and Horticultural Science, 23(4), 395-402. doi:10.1080/01140671.1995.9513915 es_ES
dc.description.references Davies, W. J., Kudoyarova, G., & Hartung, W. (2005). Long-distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. Journal of Plant Growth Regulation, 24(4). doi:10.1007/s00344-005-0103-1 es_ES
dc.description.references Degu, A., Morcia, C., Tumino, G., Hochberg, U., Toubiana, D., Mattivi, F., … Fait, A. (2015). Metabolite profiling elucidates communalities and differences in the polyphenol biosynthetic pathways of red and white Muscat genotypes. Plant Physiology and Biochemistry, 86, 24-33. doi:10.1016/j.plaphy.2014.11.006 es_ES
dc.description.references Delrot, S., Grimplet, J., Carbonell-Bejerano, P., Schwandner, A., Bert, P.-F., Bavaresco, L., … Vezzulli, S. (2020). Genetic and Genomic Approaches for Adaptation of Grapevine to Climate Change. Genomic Designing of Climate-Smart Fruit Crops, 157-270. doi:10.1007/978-3-319-97946-5_7 es_ES
dc.description.references Demangeat, G., Voisin, R., Minot, J.-C., Bosselut, N., Fuchs, M., & Esmenjaud, D. (2005). Survival of Xiphinema index in Vineyard Soil and Retention of Grapevine fanleaf virus Over Extended Time in the Absence of Host Plants. Phytopathology®, 95(10), 1151-1156. doi:10.1094/phyto-95-1151 es_ES
dc.description.references Downton, W. (1977). Photosynthesis in Salt-Stressed Grapevines. Functional Plant Biology, 4(2), 183. doi:10.1071/pp9770183 es_ES
dc.description.references Dutt, M., Li, Z. T., Kelley, K. T., Dhekney, S. A., Van Aman, M., Tattersall, J., & Gray, D. J. (2007). TRANSGENIC ROOTSTOCK PROTEIN TRANSMISSION IN GRAPEVINES. Acta Horticulturae, (738), 749-754. doi:10.17660/actahortic.2007.738.99 es_ES
dc.description.references Eissenstat, D. M., Bauerle, T. L., Comas, L. H., Lakso, A. N., Neilsen, D., Neilsen, G. H., & Smart, D. R. (2006). SEASONAL PATTERNS OF ROOT GROWTH IN RELATION TO SHOOT PHENOLOGY IN GRAPE AND APPLE. Acta Horticulturae, (721), 21-26. doi:10.17660/actahortic.2006.721.1 es_ES
dc.description.references ESCALONA, J. M., TOMÀS, M., MARTORELL, S., MEDRANO, H., RIBAS-CARBO, M., & FLEXAS, J. (2012). Carbon balance in grapevines under different soil water supply: importance of whole plant respiration. Australian Journal of Grape and Wine Research, 18(3), 308-318. doi:10.1111/j.1755-0238.2012.00193.x es_ES
dc.description.references Esmenjaud, D., & Bouquet, A. (2009). Selection and Application of Resistant Germplasm for Grapevine Nematodes Management. Integrated Management of Fruit Crops Nematodes, 195-214. doi:10.1007/978-1-4020-9858-1_8 es_ES
dc.description.references Fahrentrapp, J., Müller, L., & Schumacher, P. (2015). Is there need for leaf-galling grape phylloxera control? Presence and distribution ofDactulosphaira vitifoliaein Swiss vineyards. International Journal of Pest Management, 61(4), 340-345. doi:10.1080/09670874.2015.1067734 es_ES
dc.description.references FLEXAS, J., GALMÃ S, J., GALLÃ , A., GULÃ AS, J., POU, A., RIBAS-CARBO, M., … MEDRANO, H. (2010). Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Australian Journal of Grape and Wine Research, 16, 106-121. doi:10.1111/j.1755-0238.2009.00057.x es_ES
dc.description.references Fort, K. P., Heinitz, C. C., & Walker, M. A. (2015). Chloride exclusion patterns in six grapevine populations. Australian Journal of Grape and Wine Research, 21(1), 147-155. doi:10.1111/ajgw.12125 es_ES
dc.description.references Foundation Plant Services(2020) Grape Variery: RS‐2. Grape program at Foundation Plant Services.https://fps.ucdavis.edu/ es_ES
dc.description.references Fraga, H., Malheiro, A. C., Moutinho‐Pereira, J., & Santos, J. A. (2012). An overview of climate change impacts on European viticulture. Food and Energy Security, 1(2), 94-110. doi:10.1002/fes3.14 es_ES
dc.description.references Franck, N., Morales, J. P., Arancibia‐Avendaño, D., García de Cortázar, V., Perez‐Quezada, J. F., Zurita‐Silva, A., & Pastenes, C. (2011). Seasonal fluctuations in Vitis vinifera root respiration in the field. New Phytologist, 192(4), 939-951. doi:10.1111/j.1469-8137.2011.03860.x es_ES
dc.description.references Fu, Q., Tan, Y., Zhai, H., & Du, Y. (2019). Evaluation of salt resistance mechanisms of grapevine hybrid rootstocks. Scientia Horticulturae, 243, 148-158. doi:10.1016/j.scienta.2018.07.034 es_ES
dc.description.references Funes, I., Savé, R., Rovira, P., Molowny-Horas, R., Alcañiz, J. M., Ascaso, E., … Vayreda, J. (2019). Agricultural soil organic carbon stocks in the north-eastern Iberian Peninsula: Drivers and spatial variability. Science of The Total Environment, 668, 283-294. doi:10.1016/j.scitotenv.2019.02.317 es_ES
dc.description.references Galbignani, M., Merli, M. C., Magnanini, E., Bernizzoni, F., Talaverano, I., Gatti, M., … Poni, S. (2016). Gas exchange and water-use efficiency of cv. Sangiovese grafted to rootstocks of varying water-deficit tolerance. Irrigation Science, 34(2), 105-116. doi:10.1007/s00271-016-0490-z es_ES
dc.description.references Gambetta, G. A., Manuck, C. M., Drucker, S. T., Shaghasi, T., Fort, K., Matthews, M. A., … McElrone, A. J. (2012). The relationship between root hydraulics and scion vigour across Vitis rootstocks: what role do root aquaporins play? Journal of Experimental Botany, 63(18), 6445-6455. doi:10.1093/jxb/ers312 es_ES
dc.description.references Geier, T., Eimert, K., Scherer, R., & Nickel, C. (2008). Production and rooting behaviour of rolB-transgenic plants of grape rootstock ‘Richter 110’ (Vitis berlandieri × V. rupestris). Plant Cell, Tissue and Organ Culture, 94(3), 269-280. doi:10.1007/s11240-008-9352-6 es_ES
dc.description.references Girollet, N., Rubio, B., Lopez-Roques, C., Valière, S., Ollat, N., & Bert, P.-F. (2019). De novo phased assembly of the Vitis riparia grape genome. Scientific Data, 6(1). doi:10.1038/s41597-019-0133-3 es_ES
dc.description.references Gómez, J., Lasanta, C., Palacios-Santander, J. M., & Cubillana-Aguilera, L. M. (2015). Chemical modeling for pH prediction of acidified musts with gypsum and tartaric acid in warm regions. Food Chemistry, 168, 218-224. doi:10.1016/j.foodchem.2014.07.058 es_ES
dc.description.references Gong, H., Blackmore, D., Clingeleffer, P., Sykes, S., Jha, D., Tester, M., & Walker, R. (2010). Contrast in chloride exclusion between two grapevine genotypes and its variation in their hybrid progeny. Journal of Experimental Botany, 62(3), 989-999. doi:10.1093/jxb/erq326 es_ES
dc.description.references Gramaje, D., & Armengol, J. (2011). Fungal Trunk Pathogens in the Grapevine Propagation Process: Potential Inoculum Sources, Detection, Identification, and Management Strategies. Plant Disease, 95(9), 1040-1055. doi:10.1094/pdis-01-11-0025 es_ES
dc.description.references Gramaje, D., Armengol, J., & Ridgway, H. J. (2012). Genetic and virulence diversity, and mating type distribution of Togninia minima causing grapevine trunk diseases in Spain. European Journal of Plant Pathology, 135(4), 727-743. doi:10.1007/s10658-012-0110-6 es_ES
dc.description.references Gramaje, D., García-Jiménez, J., & Armengol, J. (2010). Field Evaluation of Grapevine Rootstocks Inoculated with Fungi Associated with Petri Disease and Esca. American Journal of Enology and Viticulture, 61(4), 512-520. doi:10.5344/ajev.2010.10021 es_ES
dc.description.references Gramaje, D., Úrbez-Torres, J. R., & Sosnowski, M. R. (2018). Managing Grapevine Trunk Diseases With Respect to Etiology and Epidemiology: Current Strategies and Future Prospects. Plant Disease, 102(1), 12-39. doi:10.1094/pdis-04-17-0512-fe es_ES
dc.description.references Gramaje, D., Mostert, L., Groenewald, J. Z., & Crous, P. W. (2015). Phaeoacremonium: From esca disease to phaeohyphomycosis. Fungal Biology, 119(9), 759-783. doi:10.1016/j.funbio.2015.06.004 es_ES
dc.description.references Gramaje, D., León, M., Santana, M., Crous, P. W., & Armengol, J. (2014). Multilocus ISSR Markers Reveal Two Major Genetic Groups in Spanish and South African Populations of the Grapevine Fungal Pathogen Cadophora luteo-olivacea. PLoS ONE, 9(10), e110417. doi:10.1371/journal.pone.0110417 es_ES
dc.description.references Granett, J., Walker, M. A., Kocsis, L., & Omer, A. D. (2001). BIOLOGY AND MANAGEMENT OF GRAPE PHYLLOXERA. Annual Review of Entomology, 46(1), 387-412. doi:10.1146/annurev.ento.46.1.387 es_ES
dc.description.references Gubler, W. D., Baumgartner, K., Browne, G. T., Eskalen, A., Latham, S. R., Petit, E., & Bayramian, L. A. (2004). Root diseases of grapevines in California and their control. Australasian Plant Pathology, 33(2), 157. doi:10.1071/ap04019 es_ES
dc.description.references Gullo, G., Dattola, A., Vonella, V., & Zappia, R. (2018). Evaluation of water relation parameters in vitis rootstocks with different drought tolerance and their effects on growth of a grafted cultivar. Journal of Plant Physiology, 226, 172-178. doi:10.1016/j.jplph.2018.04.013 es_ES
dc.description.references Haider, M. S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., & Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. doi:10.1016/j.envexpbot.2019.03.022 es_ES
dc.description.references Hajdu, E. (2015). Grapevine breeding in Hungary. Grapevine Breeding Programs for the Wine Industry, 103-134. doi:10.1016/b978-1-78242-075-0.00006-5 es_ES
dc.description.references Harbertson, J. F., & Keller, M. (2011). Rootstock Effects on Deficit-Irrigated Winegrapes in a Dry Climate: Grape and Wine Composition. American Journal of Enology and Viticulture, 63(1), 40-48. doi:10.5344/ajev.2011.11079 es_ES
dc.description.references Haywood, V., Yu, T.-S., Huang, N.-C., & Lucas, W. J. (2005). Phloem long-distance trafficking of GIBBERELLIC ACID-INSENSITIVE RNA regulates leaf development. The Plant Journal, 42(1), 49-68. doi:10.1111/j.1365-313x.2005.02351.x es_ES
dc.description.references He, F., Mu, L., Yan, G.-L., Liang, N.-N., Pan, Q.-H., Wang, J., … Duan, C.-Q. (2010). Biosynthesis of Anthocyanins and Their Regulation in Colored Grapes. Molecules, 15(12), 9057-9091. doi:10.3390/molecules15129057 es_ES
dc.description.references He, R., Zhuang, Y., Cai, Y., Agüero, C. B., Liu, S., Wu, J., … Zhang, Y. (2018). Overexpression of 9-cis-Epoxycarotenoid Dioxygenase Cisgene in Grapevine Increases Drought Tolerance and Results in Pleiotropic Effects. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.00970 es_ES
dc.description.references Heinitz, C. C., Riaz, S., Tenscher, A. C., Romero, N., & Walker, M. A. (2020). Survey of chloride exclusion in grape germplasm from the southwestern United States and Mexico. Crop Science, 60(4), 1946-1956. doi:10.1002/csc2.20085 es_ES
dc.description.references Hemmer, C., Djennane, S., Ackerer, L., Hleibieh, K., Marmonier, A., Gersch, S., … Ritzenthaler, C. (2017). Nanobody-mediated resistance to Grapevine fanleaf virus in plants. Plant Biotechnology Journal, 16(2), 660-671. doi:10.1111/pbi.12819 es_ES
dc.description.references Henderson, S. W., Baumann, U., Blackmore, D. H., Walker, A. R., Walker, R. R., & Gilliham, M. (2014). Shoot chloride exclusion and salt tolerance in grapevine is associated with differential ion transporter expression in roots. BMC Plant Biology, 14(1). doi:10.1186/s12870-014-0273-8 es_ES
dc.description.references Henderson, S. W., Dunlevy, J. D., Wu, Y., Blackmore, D. H., Walker, R. R., Edwards, E. J., … Walker, A. R. (2017). Functional differences in transport properties of natural HKT 1;1 variants influence shoot Na + exclusion in grapevine rootstocks. New Phytologist, 217(3), 1113-1127. doi:10.1111/nph.14888 es_ES
dc.description.references Hernández-Montes, E., Escalona, J. M., Tomás, M., & Medrano, H. (2017). Influence of water availability and grapevine phenological stage on the spatial variation in soil respiration. Australian Journal of Grape and Wine Research, 23(2), 273-279. doi:10.1111/ajgw.12279 es_ES
dc.description.references De Herralde, F., Savé, R., Aranda, X., & Biel, C. (2010). Grapevine Roots and Soil Environment: Growth, Distribution and Function. Methodologies and Results in Grapevine Research, 1-20. doi:10.1007/978-90-481-9283-0_1 es_ES
dc.description.references Hirzel, D. R., Steenwerth, K., Parikh, S. J., & Oberholster, A. (2017). Impact of winery wastewater irrigation on soil, grape and wine composition. Agricultural Water Management, 180, 178-189. doi:10.1016/j.agwat.2016.10.019 es_ES
dc.description.references Holtgräwe, D., Rosleff Soerensen, T., Hausmann, L., Pucker, B., Viehöver, P., Töpfer, R., & Weisshaar, B. (2020). A Partially Phase-Separated Genome Sequence Assembly of the Vitis Rootstock ‘Börner’ (Vitis riparia × Vitis cinerea) and Its Exploitation for Marker Development and Targeted Mapping. Frontiers in Plant Science, 11. doi:10.3389/fpls.2020.00156 es_ES
dc.description.references Huang, X., Lakso, A. N., & Eissenstat, D. M. (2005). Interactive effects of soil temperature and moisture on Concord grape root respiration. Journal of Experimental Botany, 56(420), 2651-2660. doi:10.1093/jxb/eri258 es_ES
dc.description.references Hwang, C.-F., Xu, K., Hu, R., Zhou, R., Riaz, S., & Walker, M. A. (2010). Cloning and characterization of XiR1, a locus responsible for dagger nematode resistance in grape. Theoretical and Applied Genetics, 121(4), 789-799. doi:10.1007/s00122-010-1349-y es_ES
dc.description.references Hyma, K. E., Barba, P., Wang, M., Londo, J. P., Acharya, C. B., Mitchell, S. E., … Cadle-Davidson, L. (2015). Heterozygous Mapping Strategy (HetMappS) for High Resolution Genotyping-By-Sequencing Markers: A Case Study in Grapevine. PLOS ONE, 10(8), e0134880. doi:10.1371/journal.pone.0134880 es_ES
dc.description.references Intergovernmental Panel on Climate Change. (2014). Climate Change 2014 Mitigation of Climate Change. doi:10.1017/cbo9781107415416 es_ES
dc.description.references Intrieri, C., Filippetti, I., Allegro, G., Valentini, G., & Pastore, C. (2016). ‘Star 50’ and ‘Star 74’: new dwarfing grape rootstocks. Acta Horticulturae, (1136), 23-26. doi:10.17660/actahortic.2016.1136.3 es_ES
dc.description.references Jelly, N. S., Schellenbaum, P., Walter, B., & Maillot, P. (2012). Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos. Transgenic Research, 21(6), 1319-1327. doi:10.1007/s11248-012-9611-5 es_ES
dc.description.references Jones, G. V., White, M. A., Cooper, O. R., & Storchmann, K. (2005). Climate Change and Global Wine Quality. Climatic Change, 73(3), 319-343. doi:10.1007/s10584-005-4704-2 es_ES
dc.description.references JONES, T. H., CULLIS, B. R., CLINGELEFFER, P. R., & RÜHL, E. H. (2009). Effects of novel hybrid and traditional rootstocks on vigour and yield components of Shiraz grapevines. Australian Journal of Grape and Wine Research, 15(3), 284-292. doi:10.1111/j.1755-0238.2009.00061.x es_ES
dc.description.references KELLER, M. (2010). Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Australian Journal of Grape and Wine Research, 16, 56-69. doi:10.1111/j.1755-0238.2009.00077.x es_ES
dc.description.references Kidman, C. M., Olarte Mantilla, S., Dry, P. R., McCarthy, M. G., & Collins, C. (2013). Effect of Water Stress on the Reproductive Performance of Shiraz (Vitis vinifera L.) Grafted to Rootstocks. American Journal of Enology and Viticulture, 65(1), 96-108. doi:10.5344/ajev.2013.13069 es_ES
dc.description.references Kocsis, L., Tarczal, E., & Molnár Kocsisné, G. (2016). Grape rootstock-scion interaction on root system development. Acta Horticulturae, (1136), 27-32. doi:10.17660/actahortic.2016.1136.4 es_ES
dc.description.references KODUR, S., TISDALL, J. M., TANG, C., & WALKER, R. R. (2009). Accumulation of potassium in grapevine rootstocks (Vitis) as affected by dry matter partitioning, root traits and transpiration. Australian Journal of Grape and Wine Research, 16(2), 273-282. doi:10.1111/j.1755-0238.2009.00088.x es_ES
dc.description.references Koundouras, S., Tsialtas, I. T., Zioziou, E., & Nikolaou, N. (2008). Rootstock effects on the adaptive strategies of grapevine (Vitis vinifera L. cv. Cabernet–Sauvignon) under contrasting water status: Leaf physiological and structural responses. Agriculture, Ecosystems & Environment, 128(1-2), 86-96. doi:10.1016/j.agee.2008.05.006 es_ES
dc.description.references Lambert, C., Bisson, J., Waffo-Téguo, P., Papastamoulis, Y., Richard, T., Corio-Costet, M.-F., … Cluzet, S. (2012). Phenolics and Their Antifungal Role in Grapevine Wood Decay: Focus on the Botryosphaeriaceae Family. Journal of Agricultural and Food Chemistry, 60(48), 11859-11868. doi:10.1021/jf303290g es_ES
dc.description.references Liang, Z., Duan, S., Sheng, J., Zhu, S., Ni, X., Shao, J., … Dong, Y. (2019). Whole-genome resequencing of 472 Vitis accessions for grapevine diversity and demographic history analyses. Nature Communications, 10(1). doi:10.1038/s41467-019-09135-8 es_ES
dc.description.references Loureiro, M. D., Moreno-Sanz, P., García, A., Fernández, O., Fernández, N., & Suárez, B. (2016). Influence of rootstock on the performance of the Albarín Negro minority grapevine cultivar. Scientia Horticulturae, 201, 145-152. doi:10.1016/j.scienta.2016.01.023 es_ES
dc.description.references Lovisolo, C., Lavoie-Lamoureux, A., Tramontini, S., & Ferrandino, A. (2016). Grapevine adaptations to water stress: new perspectives about soil/plant interactions. Theoretical and Experimental Plant Physiology, 28(1), 53-66. doi:10.1007/s40626-016-0057-7 es_ES
dc.description.references Lovisolo, C., Tramontini, S., Flexas, J., & Schubert, A. (2008). Mercurial inhibition of root hydraulic conductance in Vitis spp. rootstocks under water stress. Environmental and Experimental Botany, 63(1-3), 178-182. doi:10.1016/j.envexpbot.2007.11.005 es_ES
dc.description.references Marguerit, E., Brendel, O., Lebon, E., Van Leeuwen, C., & Ollat, N. (2012). Rootstock control of scion transpiration and its acclimation to water deficit are controlled by different genes. New Phytologist, 194(2), 416-429. doi:10.1111/j.1469-8137.2012.04059.x es_ES
dc.description.references Martín, L., Sáenz de Miera, L. E., & Martín, M. T. (2013). AFLP and RAPD Characterization of Phaeoacremonium aleophilum Associated with Vitis vinifera Decline in Spain. Journal of Phytopathology, 162(4), 245-257. doi:10.1111/jph.12180 es_ES
dc.description.references Martins, V., Cunha, A., Gerós, H., Hanana, M., & Blumwald, E. (Eds.). (2012). Mineral Compounds in the Grape Berry. The Biochemistry of the Grape Berry, 23-43. doi:10.2174/978160805360511201010023 es_ES
dc.description.references Maurel, C., Simonneau, T., & Sutka, M. (2010). The significance of roots as hydraulic rheostats. Journal of Experimental Botany, 61(12), 3191-3198. doi:10.1093/jxb/erq150 es_ES
dc.description.references Medrano, H., Tomás, M., Martorell, S., Escalona, J.-M., Pou, A., Fuentes, S., … Bota, J. (2014). Improving water use efficiency of vineyards in semi-arid regions. A review. Agronomy for Sustainable Development, 35(2), 499-517. doi:10.1007/s13593-014-0280-z es_ES
dc.description.references Meggio, F., Prinsi, B., Negri, A. S., Simone Di Lorenzo, G., Lucchini, G., Pitacco, A., … Espen, L. (2014). Biochemical and physiological responses of two grapevine rootstock genotypes to drought and salt treatments. Australian Journal of Grape and Wine Research, 20(2), 310-323. doi:10.1111/ajgw.12071 es_ES
dc.description.references Merli, M. C., Magnanini, E., Gatti, M., Pirez, F. J., Pueyo, I. B., Intrigliolo, D. S., & Poni, S. (2016). Water stress improves whole-canopy water use efficiency and berry composition of cv. Sangiovese ( Vitis vinifera L.) grapevines grafted on the new drought-tolerant rootstock M4. Agricultural Water Management, 169, 106-114. doi:10.1016/j.agwat.2016.02.025 es_ES
dc.description.references Mira de Orduña, R. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43(7), 1844-1855. doi:10.1016/j.foodres.2010.05.001 es_ES
dc.description.references Moens, M., Perry, R. N., & Starr, J. L. (s. f.). Meloidogyne species - a diverse group of novel and important plant parasites. Root-knot nematodes, 1-17. doi:10.1079/9781845934927.0001 es_ES
dc.description.references Morinaga, K., Imai, S., Yakushiji, H., & Koshita, Y. (2003). Effects of fruit load on partitioning of and , respiration, and growth of grapevine roots at different fruit stages. Scientia Horticulturae, 97(3-4), 239-253. doi:10.1016/s0304-4238(02)00199-1 es_ES
dc.description.references Mudge, K., Janick, J., Scofield, S., & Goldschmidt, E. E. (2009). A History of Grafting. Horticultural Reviews, 437-493. doi:10.1002/9780470593776.ch9 es_ES
dc.description.references Munns, R. (2005). Genes and salt tolerance: bringing them together. New Phytologist, 167(3), 645-663. doi:10.1111/j.1469-8137.2005.01487.x es_ES
dc.description.references Neethling, E., Petitjean, T., Quénol, H., & Barbeau, G. (2016). Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitigation and Adaptation Strategies for Global Change, 22(5), 777-803. doi:10.1007/s11027-015-9698-0 es_ES
dc.description.references NICOL, J. M., STIRLING, G. R., ROSE, B. J., MAY, P., & HEESWIJCK, R. (1999). Impact of nematodes on grapevine growth and productivity: current knowledge and future directions, with special reference to Australian viticulture. Australian Journal of Grape and Wine Research, 5(3), 109-127. doi:10.1111/j.1755-0238.1999.tb00295.x es_ES
dc.description.references Ollat, N., Peccoux, A., Papura, D., Esmenjaud, D., Marguerit, E., Tandonnet, J.-P., … Delrot, S. (2016). Rootstocks as a component of adaptation to environment. Grapevine in a Changing Environment, 68-108. doi:10.1002/9781118735985.ch4 es_ES
dc.description.references Padgett-Johnson, M., Williams, L. E., & Walker, M. A. (2003). Vine Water Relations, Gas Exchange, and Vegetative Growth of Seventeen Vitis Species Grown under Irrigated and Nonirrigated Conditions in California. Journal of the American Society for Horticultural Science, 128(2), 269-276. doi:10.21273/jashs.128.2.0269 es_ES
dc.description.references Peccoux, A., Loveys, B., Zhu, J., Gambetta, G. A., Delrot, S., Vivin, P., … Dai, Z. (2017). Dissecting the rootstock control of scion transpiration using model-assisted analyses in grapevine. Tree Physiology, 38(7), 1026-1040. doi:10.1093/treephys/tpx153 es_ES
dc.description.references Phogat, V., Cox, J. W., & Šimůnek, J. (2018). Identifying the future water and salinity risks to irrigated viticulture in the Murray-Darling Basin, South Australia. Agricultural Water Management, 201, 107-117. doi:10.1016/j.agwat.2018.01.025 es_ES
dc.description.references Pl@ntGrape(2020)Catalogue of vines cultivated in France IFV—INRAE—l'Institut Agro Montpellier SupAgro 2009–2020.http://plantgrape.plantnet-project.org/en/ es_ES
dc.description.references Porro, D., Pedò, S., Bertoldi, D., Bortolotti, L., Failla, O., & Zamboni, M. (2013). EVALUATION OF NEW ROOTSTOCKS FOR GRAPEVINE: NUTRITIONAL ASPECTS. Acta Horticulturae, (984), 109-115. doi:10.17660/actahortic.2013.984.9 es_ES
dc.description.references Pouzoulet, J., Scudiero, E., Schiavon, M., & Rolshausen, P. E. (2017). Xylem Vessel Diameter Affects the Compartmentalization of the Vascular Pathogen Phaeomoniella chlamydospora in Grapevine. Frontiers in Plant Science, 8. doi:10.3389/fpls.2017.01442 es_ES
dc.description.references Powell, K. S., Cooper, P. D., & Forneck, A. (2013). The Biology, Physiology and Host–Plant Interactions of Grape Phylloxera Daktulosphaira vitifoliae. Behaviour and Physiology of Root Herbivores, 159-218. doi:10.1016/b978-0-12-417165-7.00004-0 es_ES
dc.description.references Prinsi, B., Failla, O., Scienza, A., & Espen, L. (2020). Root Proteomic Analysis of Two Grapevine Rootstock Genotypes Showing Different Susceptibility to Salt Stress. International Journal of Molecular Sciences, 21(3), 1076. doi:10.3390/ijms21031076 es_ES
dc.description.references Pulko, B., Vršič, S., & Valdhuber, J. (2012).  Influence of various rootstocks on the yield and grape composition of Sauvignon Blanc. Czech Journal of Food Sciences, 30(No. 5), 467-473. doi:10.17221/347/2011-cjfs es_ES
dc.description.references Goheen, A. C., Raski, D. J., Taylor, R. H., Hewitt, W. B., & Taylor, C. E. (1965). Survival of Xiphinema Index and Reservoirs of Fanleaf Virus in Fallowed Vineyard Soil. Nematologica, 11(3), 349-352. doi:10.1163/187529265x00267 es_ES
dc.description.references Reisch, B. I., Owens, C. L., & Cousins, P. S. (2011). Grape. Fruit Breeding, 225-262. doi:10.1007/978-1-4419-0763-9_7 es_ES
dc.description.references Riaz, S., Pap, D., Uretsky, J., Laucou, V., Boursiquot, J.-M., Kocsis, L., & Andrew Walker, M. (2019). Genetic diversity and parentage analysis of grape rootstocks. Theoretical and Applied Genetics, 132(6), 1847-1860. doi:10.1007/s00122-019-03320-5 es_ES
dc.description.references Rolshausen, P. E., Greve, L. C., Labavitch, J. M., Mahoney, N. E., Molyneux, R. J., & Gubler, W. D. (2008). Pathogenesis of Eutypa lata in Grapevine: Identification of Virulence Factors and Biochemical Characterization of Cordon Dieback. Phytopathology®, 98(2), 222-229. doi:10.1094/phyto-98-2-0222 es_ES
dc.description.references Romero, P., Botía, P., & Navarro, J. M. (2018). Selecting rootstocks to improve vine performance and vineyard sustainability in deficit irrigated Monastrell grapevines under semiarid conditions. Agricultural Water Management, 209, 73-93. doi:10.1016/j.agwat.2018.07.012 es_ES
dc.description.references Romero, P., Dodd, I. C., & Martinez-Cutillas, A. (2012). Contrasting physiological effects of partial root zone drying in field-grown grapevine (Vitis vinifera L. cv. Monastrell) according to total soil water availability. Journal of Experimental Botany, 63(11), 4071-4083. doi:10.1093/jxb/ers088 es_ES
dc.description.references Rossdeutsch, L., Edwards, E., Cookson, S. J., Barrieu, F., Gambetta, G. A., Delrot, S., & Ollat, N. (2016). ABA-mediated responses to water deficit separate grapevine genotypes by their genetic background. BMC Plant Biology, 16(1). doi:10.1186/s12870-016-0778-4 es_ES
dc.description.references Rubio, B., Lalanne-Tisné, G., Voisin, R., Tandonnet, J.-P., Portier, U., Van Ghelder, C., … Esmenjaud, D. (2020). Characterization of genetic determinants of the resistance to phylloxera, Daktulosphaira vitifoliae, and the dagger nematode Xiphinema index from muscadine background. BMC Plant Biology, 20(1). doi:10.1186/s12870-020-2310-0 es_ES
dc.description.references Ruhl, E. (1989). Uptake and distribution of potassium by grapevine rootstocks and its implication for grape juice pH of scion varieties. Australian Journal of Experimental Agriculture, 29(5), 707. doi:10.1071/ea9890707 es_ES
dc.description.references Rühl E.H.(1996)‘Borner’ rootstock grape. US Patent: Plant 9575. es_ES
dc.description.references Rühl, E. H. (2000). EFFECT OF ROOTSTOCKS AND K+ SUPPLY ON PH AND ACIDITY OF GRAPE JUICE. Acta Horticulturae, (512), 31-38. doi:10.17660/actahortic.2000.512.3 es_ES
dc.description.references Sabir, A., & Sahin, Z. (2018). The Response of Soilless Grown ‘Michele Palieri’ (Vitis vinifera L.) Grapevine Cultivar to Deficit Irrigation Under the Effects of Different Rootstocks. Erwerbs-Obstbau, 60(S1), 21-27. doi:10.1007/s10341-018-0378-6 es_ES
dc.description.references Santos, J. A., Fraga, H., Malheiro, A. C., Moutinho-Pereira, J., Dinis, L.-T., Correia, C., … Schultz, H. R. (2020). A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Applied Sciences, 10(9), 3092. doi:10.3390/app10093092 es_ES
dc.description.references Saucet, S. B., Van Ghelder, C., Abad, P., Duval, H., & Esmenjaud, D. (2016). Resistance to root‐knot nematodes Meloidogyne spp. in woody plants. New Phytologist, 211(1), 41-56. doi:10.1111/nph.13933 es_ES
dc.description.references Schreiner, R. P. (2005). Spatial and Temporal Variation of Roots, Arbuscular Mycorrhizal Fungi, and Plant and Soil Nutrients in a Mature Pinot Noir (Vitis vinifera L.) Vineyard in Oregon, USA. Plant and Soil, 276(1-2), 219-234. doi:10.1007/s11104-005-4895-0 es_ES
dc.description.references SCHULTZ, H. R., & STOLL, M. (2010). Some critical issues in environmental physiology of grapevines: future challenges and current limitations. Australian Journal of Grape and Wine Research, 16, 4-24. doi:10.1111/j.1755-0238.2009.00074.x es_ES
dc.description.references Serra, I., Strever, A., Myburgh, P. A., & Deloire, A. (2013). Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape and Wine Research, 20(1), 1-14. doi:10.1111/ajgw.12054 es_ES
dc.description.references Smith, B. P., Wheal, M. S., Jones, T. H., Morales, N. B., & Clingeleffer, P. R. (2012). Heritability of adventitious rooting of grapevine dormant canes. Tree Genetics & Genomes, 9(2), 467-474. doi:10.1007/s11295-012-0570-z es_ES
dc.description.references Smith, H. M., Smith, B. P., Morales, N. B., Moskwa, S., Clingeleffer, P. R., & Thomas, M. R. (2018). SNP markers tightly linked to root knot nematode resistance in grapevine (Vitis cinerea) identified by a genotyping-by-sequencing approach followed by Sequenom MassARRAY validation. PLOS ONE, 13(2), e0193121. doi:10.1371/journal.pone.0193121 es_ES
dc.description.references Smith, H. M., Clarke, C. W., Smith, B. P., Carmody, B. M., Thomas, M. R., Clingeleffer, P. R., & Powell, K. S. (2018). Genetic identification of SNP markers linked to a new grape phylloxera resistant locus in Vitis cinerea for marker-assisted selection. BMC Plant Biology, 18(1). doi:10.1186/s12870-018-1590-0 es_ES
dc.description.references SOAR, C. J., DRY, P. R., & LOVEYS, B. R. (2006). Scion photosynthesis and leaf gas exchange in Vitis vinifera L. cv. Shiraz: Mediation of rootstock effects via xylem sap ABA. Australian Journal of Grape and Wine Research, 12(2), 82-96. doi:10.1111/j.1755-0238.2006.tb00047.x es_ES
dc.description.references STEVENS, R. M., PECH, J. M., GIBBERD, M. R., WALKER, R. R., & NICHOLAS, P. R. (2010). Reduced irrigation and rootstock effects on vegetative growth, yield and its components, and leaf physiological responses of Shiraz. Australian Journal of Grape and Wine Research, 16(3), 413-425. doi:10.1111/j.1755-0238.2010.00102.x es_ES
dc.description.references Stevens, R. M., Pech, J. M., Taylor, J., Clingeleffer, P., Walker, R. R., & Nicholas, P. R. (2015). Effects of irrigation and rootstock on V itis vinifera (L.) cv. Shiraz berry composition and shrivel, and wine composition and wine score. Australian Journal of Grape and Wine Research, 22(1), 124-136. doi:10.1111/ajgw.12163 es_ES
dc.description.references STEVENS, R. M., PECH, J. M., GIBBERD, M. R., WALKER, R. R., JONES, J. A., TAYLOR, J., & NICHOLAS, P. R. (2008). Effect of reduced irrigation on growth, yield, ripening rates and water relations of Chardonnay vines grafted to five rootstocks. Australian Journal of Grape and Wine Research, ???-??? doi:10.1111/j.1755-0238.2008.00018.x es_ES
dc.description.references Tandonnet, J.-P., Marguerit, E., Cookson, S. J., & Ollat, N. (2018). Genetic architecture of aerial and root traits in field-grown grafted grapevines is largely independent. Theoretical and Applied Genetics, 131(4), 903-915. doi:10.1007/s00122-017-3046-6 es_ES
dc.description.references Teixeira, A., Eiras-Dias, J., Castellarin, S., & Gerós, H. (2013). Berry Phenolics of Grapevine under Challenging Environments. International Journal of Molecular Sciences, 14(9), 18711-18739. doi:10.3390/ijms140918711 es_ES
dc.description.references Téliz, D., Landa, B. B., Rapoport, H. F., Camacho, F. P., Jiménez-Díaz, R. M., & Castillo, P. (2007). Plant-Parasitic Nematodes Infecting Grapevine in Southern Spain and Susceptible Reaction to Root-Knot Nematodes of Rootstocks Reported as Moderately Resistant. Plant Disease, 91(9), 1147-1154. doi:10.1094/pdis-91-9-1147 es_ES
dc.description.references Teubes A.(2014)History of rootstocks in South Africa (part 5). Wineland Magazine.https://www.wineland.co.za/history-of-rootstocks-in-south-africa-part-5/ es_ES
dc.description.references Tramontini, S., Vitali, M., Centioni, L., Schubert, A., & Lovisolo, C. (2013). Rootstock control of scion response to water stress in grapevine. Environmental and Experimental Botany, 93, 20-26. doi:10.1016/j.envexpbot.2013.04.001 es_ES
dc.description.references Van Leeuwen, C., & Darriet, P. (2016). The Impact of Climate Change on Viticulture and Wine Quality. Journal of Wine Economics, 11(1), 150-167. doi:10.1017/jwe.2015.21 es_ES
dc.description.references Van Leeuwen, C., & Destrac-Irvine, A. (2017). Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One, 51(2), 147-154. doi:10.20870/oeno-one.2017.51.2.1647 es_ES
dc.description.references van Leeuwen, Destrac-Irvine, Dubernet, Duchêne, Gowdy, Marguerit, … Ollat. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9(9), 514. doi:10.3390/agronomy9090514 es_ES
dc.description.references Vigne, E., Komar, V., & Fuchs, M. (2004). Field Safety Assessment of Recombination in Transgenic Grapevines Expressing the Coat Protein Gene of Grapevine fanleaf virus. Transgenic Research, 13(2), 165-179. doi:10.1023/b:trag.0000026075.79097.c9 es_ES
dc.description.references Villate, L., Morin, E., Demangeat, G., Van Helden, M., & Esmenjaud, D. (2012). Control of Xiphinema index Populations by Fallow Plants Under Greenhouse and Field Conditions. Phytopathology®, 102(6), 627-634. doi:10.1094/phyto-01-12-0007 es_ES
dc.description.references Volder, A., Smart, D. R., Bloom, A. J., & Eissenstat, D. M. (2004). Rapid decline in nitrate uptake and respiration with age in fine lateral roots of grape: implications for root efficiency and competitive effectiveness. New Phytologist, 165(2), 493-502. doi:10.1111/j.1469-8137.2004.01222.x es_ES
dc.description.references WALKER, R. R., BLACKMORE, D. H., & CLINGELEFFER, P. R. (2010). Impact of rootstock on yield and ion concentrations in petioles, juice and wine of Shiraz and Chardonnay in different viticultural environments with different irrigation water salinity. Australian Journal of Grape and Wine Research, 16(1), 243-257. doi:10.1111/j.1755-0238.2009.00081.x es_ES
dc.description.references WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., & CORRELL, R. L. (2002). Rootstock effects on salt tolerance of irrigated field-grown grapevines (Vitis vinifera L. cv. Sultana).: 1. Yield and vigour inter-relationships. Australian Journal of Grape and Wine Research, 8(1), 3-14. doi:10.1111/j.1755-0238.2002.tb00206.x es_ES
dc.description.references Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., & Emanuelli, D. (2014). Rootstock type determines tolerance of Chardonnay and Shiraz to long-term saline irrigation. Australian Journal of Grape and Wine Research, 20(3), 496-506. doi:10.1111/ajgw.12094 es_ES
dc.description.references WALKER, R. R., BLACKMORE, D. H., CLINGELEFFER, P. R., & IACONO, F. (1997). Effect of salinity and Ramsey rootstock on ion concentrations and carbon dioxide assimilation in leaves of drip-irrigated, field-grown grapevines (Vitis vinifera L. cv. Sultana). Australian Journal of Grape and Wine Research, 3(2), 66-74. doi:10.1111/j.1755-0238.1997.tb00117.x es_ES
dc.description.references Walker, R. R., Blackmore, D. H., Clingeleffer, P. R., Holt, H., Pearson, W., & Francis, I. L. (2019). Effect of rootstock on yield, grape composition and wine sensory attributes of Shiraz grown in a moderately saline environment. Australian Journal of Grape and Wine Research, 25(4), 414-429. doi:10.1111/ajgw.12409 es_ES
dc.description.references Walker, R. R., Blackmore, D. H., Gong, H., Henderson, S. W., Gilliham, M., & Walker, A. R. (2018). Analysis of the salt exclusion phenotype in rooted leaves of grapevine (Vitis spp.). Australian Journal of Grape and Wine Research, 24(3), 317-326. doi:10.1111/ajgw.12334 es_ES
dc.description.references Wallis, C. M., Wallingford, A. K., & Chen, J. (2013). Grapevine rootstock effects on scion sap phenolic levels, resistance to Xylella fastidiosa infection, and progression of Pierce’s disease. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00502 es_ES
dc.description.references Warschefsky, E. J., Klein, L. L., Frank, M. H., Chitwood, D. H., Londo, J. P., von Wettberg, E. J. B., & Miller, A. J. (2016). Rootstocks: Diversity, Domestication, and Impacts on Shoot Phenotypes. Trends in Plant Science, 21(5), 418-437. doi:10.1016/j.tplants.2015.11.008 es_ES
dc.description.references Webster, A. D. (2001). ROOTSTOCKS FOR TEMPERATE FRUIT CROPS: CURRENT USES, FUTURE POTENTIAL AND ALTERNATIVE STRATEGIES. Acta Horticulturae, (557), 25-34. doi:10.17660/actahortic.2001.557.1 es_ES
dc.description.references Wheeler S.F.(2006)The role of abscisic acid in grape berry development. PhD Thesis School of Agriculture and Wine Discipline of Horticulture Viticulture and Oenology in collaboration with CSIRO Plant Industry Horticulture Unit The University of Adelaide Adelaide SA Australia.https://digital.library.adelaide.edu.au/dspace/bitstream/2440/57767/8/02whole.pdf es_ES
dc.description.references WILLIAMS, L. E. (2010). Interaction of rootstock and applied water amounts at various fractions of estimated evapotranspiration (ETc) on productivity of Cabernet Sauvignon. Australian Journal of Grape and Wine Research, 16(3), 434-444. doi:10.1111/j.1755-0238.2010.00104.x es_ES
dc.description.references Wyss, U. (2014). Xiphinema index, Maintenance and Feeding in Monoxenic Cultures. Rearing Animal and Plant Pathogen Vectors, 235-267. doi:10.1201/b16804-14 es_ES
dc.description.references Xu, K., Riaz, S., Roncoroni, N. C., Jin, Y., Hu, R., Zhou, R., & Walker, M. A. (2007). Genetic and QTL analysis of resistance to Xiphinema index in a grapevine cross. Theoretical and Applied Genetics, 116(2), 305-311. doi:10.1007/s00122-007-0670-6 es_ES
dc.description.references Yang, Y., Jittayasothorn, Y., Chronis, D., Wang, X., Cousins, P., & Zhong, G.-Y. (2013). Molecular Characteristics and Efficacy of 16D10 siRNAs in Inhibiting Root-Knot Nematode Infection in Transgenic Grape Hairy Roots. PLoS ONE, 8(7), e69463. doi:10.1371/journal.pone.0069463 es_ES
dc.description.references Yin, L., Clark, M. D., Burkness, E. C., & Hutchison, W. D. (2019). Grape Phylloxera (Hemiptera: Phylloxeridae), on Cold-Hardy Hybrid Wine Grapes (Vitis spp.): A Review of Pest Biology, Damage, and Management Practices. Journal of Integrated Pest Management, 10(1). doi:10.1093/jipm/pmz011 es_ES
dc.description.references Yıldırım, K., Yağcı, A., Sucu, S., & Tunç, S. (2018). Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiology and Biochemistry, 127, 256-268. doi:10.1016/j.plaphy.2018.03.034 es_ES
dc.description.references Zhang, J., Hausmann, L., Eibach, R., Welter, L. J., Töpfer, R., & Zyprian, E. M. (2009). A framework map from grapevine V3125 (Vitis vinifera ‘Schiava grossa’ × ‘Riesling’) × rootstock cultivar ‘Börner’ (Vitis riparia × Vitis cinerea) to localize genetic determinants of phylloxera root resistance. Theoretical and Applied Genetics, 119(6), 1039-1051. doi:10.1007/s00122-009-1107-1 es_ES
dc.description.references Zhang, L., Marguerit, E., Rossdeutsch, L., Ollat, N., & Gambetta, G. A. (2016). The influence of grapevine rootstocks on scion growth and drought resistance. Theoretical and Experimental Plant Physiology, 28(2), 143-157. doi:10.1007/s40626-016-0070-x es_ES
dc.description.references ZHANG, X., WALKER, R. R., STEVENS, R. M., & PRIOR, L. D. (2002). Yield-salinity relationships of different grapevine (Vitis vinifera L.) scion-rootstock combinations. Australian Journal of Grape and Wine Research, 8(3), 150-156. doi:10.1111/j.1755-0238.2002.tb00250.x es_ES
dc.description.references Zhou, Y., Minio, A., Massonnet, M., Solares, E., Lv, Y., Beridze, T., … Gaut, B. S. (2019). The population genetics of structural variants in grapevine domestication. Nature Plants, 5(9), 965-979. doi:10.1038/s41477-019-0507-8 es_ES
dc.description.references Zohary, D., & Spiegel-Roy, P. (1975). Beginnings of Fruit Growing in the Old World. Science, 187(4174), 319-327. doi:10.1126/science.187.4174.319 es_ES
dc.description.references Zou, C., Karn, A., Reisch, B., Nguyen, A., Sun, Y., Bao, Y., … Cadle-Davidson, L. (2020). Haplotyping the Vitis collinear core genome with rhAmpSeq improves marker transferability in a diverse genus. Nature Communications, 11(1). doi:10.1038/s41467-019-14280-1 es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES


This item appears in the following Collection(s)

Show simple item record