- -

Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by


  • Estadisticas de Uso

Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil

Show full item record

Verdeguer Sancho, MM.; Torres-Pagan, N.; Muñoz, M.; Jouini, A.; García-Plasencia, S.; Chinchilla, P.; Berbegal Martinez, M.... (2020). Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil. Molecules. 25(12):1-31. https://doi.org/10.3390/molecules25122832

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164814

Files in this item

Item Metadata

Title: Herbicidal Activity of Thymbra capitata (L.) Cav. Essential Oil
Author: Verdeguer Sancho, Mercedes María Torres-Pagan, Natalia Muñoz, Marta Jouini, Amira García-Plasencia, Susana Chinchilla, Pablo Berbegal Martinez, Monica Salamone, Adele Agnello, Santo Carrubba, Alessandra Cabeiras-Freijanes, Luz Regueira-Marcos, Lois Sánchez-Moreiras, Adela M. Blázquez, María Amparo
UPV Unit: Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals
Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani
Issued date:
[EN] The bioherbicidal potential ofThymbra capitata(L.) Cav. essential oil (EO) and its main compound carvacrol was investigated. In in vitro assays, the EO blocked the germination and seedling growth ofErigeron ...[+]
Subjects: Weed control , Natural herbicides , Essential oils , Thymbra capitata , Carvacrol , Integrated weed management , Bioherbicides
Copyrigths: Reconocimiento (by)
Molecules. (issn: 1420-3049 )
DOI: 10.3390/molecules25122832
Publisher version: https://doi.org/10.3390/molecules25122832
Project ID:
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094716-B-I00/ES/ESTUDIO DEL MODO DE ACCION Y EL POTENCIAL BIOHERBICIDA DE COMPUESTOS NATURALES CON ACTIVIDAD FITOTOXICA/
This research was supported by the Universitat Politècnica de València [project number: SP20120543], by Generalitat Valenciana [project number GV/2014/039], and by the Spanish Ministry of Science, Innovation and Universities ...[+]
Type: Artículo


Barros, L., Heleno, S. A., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 43(3), 544-550. doi:10.1016/j.lwt.2009.09.024

Goudjil, M. B., Zighmi, S., Hamada, D., Mahcene, Z., Bencheikh, S. E., & Ladjel, S. (2020). Biological activities of essential oils extracted from Thymus capitatus (Lamiaceae). South African Journal of Botany, 128, 274-282. doi:10.1016/j.sajb.2019.11.020

Gagliano Candela, R., Maggi, F., Lazzara, G., Rosselli, S., & Bruno, M. (2019). The Essential Oil of Thymbra capitata and its Application as A Biocide on Stone and Derived Surfaces. Plants, 8(9), 300. doi:10.3390/plants8090300 [+]
Barros, L., Heleno, S. A., Carvalho, A. M., & Ferreira, I. C. F. R. (2010). Lamiaceae often used in Portuguese folk medicine as a source of powerful antioxidants: Vitamins and phenolics. LWT - Food Science and Technology, 43(3), 544-550. doi:10.1016/j.lwt.2009.09.024

Goudjil, M. B., Zighmi, S., Hamada, D., Mahcene, Z., Bencheikh, S. E., & Ladjel, S. (2020). Biological activities of essential oils extracted from Thymus capitatus (Lamiaceae). South African Journal of Botany, 128, 274-282. doi:10.1016/j.sajb.2019.11.020

Gagliano Candela, R., Maggi, F., Lazzara, G., Rosselli, S., & Bruno, M. (2019). The Essential Oil of Thymbra capitata and its Application as A Biocide on Stone and Derived Surfaces. Plants, 8(9), 300. doi:10.3390/plants8090300

Tohidi, B., Rahimmalek, M., Arzani, A., & Sabzalian, M. R. (2020). Thymol, carvacrol, and antioxidant accumulation in Thymus species in response to different light spectra emitted by light-emitting diodes. Food Chemistry, 307, 125521. doi:10.1016/j.foodchem.2019.125521

Vladimir-Knežević, S., Blažeković, B., Kindl, M., Vladić, J., Lower-Nedza, A., & Brantner, A. (2014). Acetylcholinesterase Inhibitory, Antioxidant and Phytochemical Properties of Selected Medicinal Plants of the Lamiaceae Family. Molecules, 19(1), 767-782. doi:10.3390/molecules19010767

BRÄUCHLER, C. (2018). Delimitation and revision of the genus Thymbra (Lamiaceae). Phytotaxa, 369(1), 15. doi:10.11646/phytotaxa.369.1.2

Paton, A. J., Springate, D., Suddee, S., Otieno, D., Grayer, R. J., Harley, M. M., … Savolainen, V. (2004). Phylogeny and evolution of basils and allies (Ocimeae, Labiatae) based on three plastid DNA regions. Molecular Phylogenetics and Evolution, 31(1), 277-299. doi:10.1016/j.ympev.2003.08.002

Pastore, J. F. B., Harley, R. M., Forest, F., Paton, A., & van den Berg, C. (2011). Phylogeny of the subtribe Hyptidinae (Lamiaceae tribe Ocimeae) as inferred from nuclear and plastid DNA. TAXON, 60(5), 1317-1329. doi:10.1002/tax.605008

Salmaki, Y., Zarre, S., Ryding, O., Lindqvist, C., Bräuchler, C., Heubl, G., … Bendiksby, M. (2013). Molecular phylogeny of tribe Stachydeae (Lamiaceae subfamily Lamioideae). Molecular Phylogenetics and Evolution, 69(3), 535-551. doi:10.1016/j.ympev.2013.07.024

Salmaki, Y., Kattari, S., Heubl, G., & Bräuchler, C. (2016). Phylogeny of non-monophyletic <I>Teucrium</I> (Lamiaceae: Ajugoideae): Implications for character evolution and taxonomy. Taxon, 65(4), 805-822. doi:10.12705/654.8

LI, B., & OLMSTEAD, R. G. (2017). Two new subfamilies in Lamiaceae. Phytotaxa, 313(2), 222. doi:10.11646/phytotaxa.313.2.9

Bräuchler, C., Meimberg, H., & Heubl, G. (2010). Molecular phylogeny of Menthinae (Lamiaceae, Nepetoideae, Mentheae) – Taxonomy, biogeography and conflicts. Molecular Phylogenetics and Evolution, 55(2), 501-523. doi:10.1016/j.ympev.2010.01.016

World Checklist of Lamiaceae. Facilitated by the Royal Botanic Gardens, Kewhttp://wcsp.science.kew.org

Harley, R. M., Atkins, S., Budantsev, A. L., Cantino, P. D., Conn, B. J., Grayer, R., … Upson, T. (2004). Labiatae. Flowering Plants · Dicotyledons, 167-275. doi:10.1007/978-3-642-18617-2_11

Miceli, A., Negro, C., & Tommasi, L. (2006). Essential oil variability in Thymbra capitata (L.) Cav. growing wild in Southern Apulia (Italy). Biochemical Systematics and Ecology, 34(6), 528-535. doi:10.1016/j.bse.2005.12.010

Delgado-Adámez, J., Garrido, M., Bote, M. E., Fuentes-Pérez, M. C., Espino, J., & Martín-Vertedor, D. (2017). Chemical composition and bioactivity of essential oils from flower and fruit of Thymbra capitata and Thymus species. Journal of Food Science and Technology, 54(7), 1857-1865. doi:10.1007/s13197-017-2617-5

Alves, T. M. de A., Silva, A. F., Brandão, M., Grandi, T. S. M., Smânia, E. de F. A., Smânia Júnior, A., & Zani, C. L. (2000). Biological screening of Brazilian medicinal plants. Memórias do Instituto Oswaldo Cruz, 95(3), 367-373. doi:10.1590/s0074-02762000000300012

BOUNATIROU, S., SMITI, S., MIGUEL, M., FALEIRO, L., REJEB, M., NEFFATI, M., … PEDRO, L. (2007). Chemical composition, antioxidant and antibacterial activities of the essential oils isolated from Tunisian Thymus capitatus Hoff. et Link. Food Chemistry, 105(1), 146-155. doi:10.1016/j.foodchem.2007.03.059

Nejad Ebrahimi, S., Hadian, J., Mirjalili, M. H., Sonboli, A., & Yousefzadi, M. (2008). Essential oil composition and antibacterial activity of Thymus caramanicus at different phenological stages. Food Chemistry, 110(4), 927-931. doi:10.1016/j.foodchem.2008.02.083

Casiglia, S., Bruno, M., Scandolera, E., Senatore, F., & Senatore, F. (2019). Influence of harvesting time on composition of the essential oil of Thymus capitatus (L.) Hoffmanns. & Link. growing wild in northern Sicily and its activity on microorganisms affecting historical art crafts. Arabian Journal of Chemistry, 12(8), 2704-2712. doi:10.1016/j.arabjc.2015.05.017

Grayer, R. J., & Harborne, J. B. (1994). A survey of antifungal compounds from higher plants, 1982–1993. Phytochemistry, 37(1), 19-42. doi:10.1016/0031-9422(94)85005-4

Kalemba, D., & Kunicka, A. (2003). Antibacterial and Antifungal Properties of Essential Oils. Current Medicinal Chemistry, 10(10), 813-829. doi:10.2174/0929867033457719

Ricci, D., Fraternale, D., Giamperi, L., Bucchini, A., Epifano, F., Burini, G., & Curini, M. (2005). Chemical composition, antimicrobial and antioxidant activity of the essential oil of Teucrium marum (Lamiaceae). Journal of Ethnopharmacology, 98(1-2), 195-200. doi:10.1016/j.jep.2005.01.022

Al-Mustafa, A. H., & Al-Thuniba, O. Y. (2008). Antioxidant Activity of Some Jordanian Medicinal Plants Used Traditionally for Treatment of Diabetes. Pakistan Journal of Biological Sciences, 11(3), 351-358. doi:10.3923/pjbs.2008.351.358

Dhifi, W., Bellili, S., Jazi, S., Bahloul, N., & Mnif, W. (2016). Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines, 3(4), 25. doi:10.3390/medicines3040025

Ruberto, G., Biondi, D., & Piattelli, M. (1992). The Essential Oil of SicilianThymus capitatus(L.) Hoffmanns, et Link. Journal of Essential Oil Research, 4(4), 417-418. doi:10.1080/10412905.1992.9698094

Saija, A., Speciale, A., Trombetta, D., Leto, C., Tuttolomondo, T., La Bella, S., … Ruberto, G. (2016). Phytochemical, Ecological and Antioxidant Evaluation of Wild Sicilian Thyme: Thymbra capitata (L.) Cav . Chemistry & Biodiversity, 13(12), 1641-1655. doi:10.1002/cbdv.201600072

Arras, G., & Grella, G. E. (1992). Wild thyme,Thymus capitatus, essential oil seasonal changes and antimycotic activity. Journal of Horticultural Science, 67(2), 197-202. doi:10.1080/00221589.1992.11516237

Tommasi, L., Negro, C., Cerfeda, A., Nutricati, E., Zuccarello, V., De Bellis, L., & Miceli, A. (2007). Influence of Environmental Factors on Essential Oil Variability inThymbra capitata(L.) Cav. Growing Wild in Southern Puglia (Italy). Journal of Essential Oil Research, 19(6), 572-580. doi:10.1080/10412905.2007.9699335

Salas, J. B., Téllez, T. R., Alonso, M. J. P., Pardo, F. M. V., de los Ángeles Cases Capdevila, M., & Rodríguez, C. G. (2010). Chemical composition and antioxidant activity of the essential oil ofThymbra capitata(L.) Cav. in Spain. Acta Botanica Gallica, 157(1), 55-63. doi:10.1080/12538078.2010.10516189

Rodrigues, L. S., Monteiro, P., Maldoa-Martins, M., Monteiro, A., Povoa, O., & Teixeira, G. (2006). BIODIVERSITY STUDIES ON PORTUGUESE THYMBRA CAPITATA. Acta Horticulturae, (723), 127-132. doi:10.17660/actahortic.2006.723.13

El Hadj Ali, I. B., Guetat, A., & Boussaid, M. (2012). Variation of Volatiles in Tunisian Populations of Thymbra capitata (L.) Cav. (Lamiaceae). Chemistry & Biodiversity, 9(7), 1272-1285. doi:10.1002/cbdv.201100344

Katz, D. A., Sneh, B., & Friedman, J. (1987). The allelopathic potential ofCoridothymus capitatus L. (Labiatae). Preliminary studies on the roles of the shrub in the inhibition of annuals germination and/or to promote allelopathically active actinomycetes. Plant and Soil, 98(1), 53-66. doi:10.1007/bf02381727

Dudai, N., Poljakoff-Mayber, A., Mayer, A. M., Putievsky, E., & Lerner, H. R. (1999). Journal of Chemical Ecology, 25(5), 1079-1089. doi:10.1023/a:1020881825669

Saoud, I., Hamrouni, L., Gargouri, S., Amri, I., Hanana, M., Fezzani, T., … Jamoussi, B. (2013). Chemical composition, weed killer and antifungal activities of Tunisian thyme (Thymus capitatusHoff. et Link.) essential oils. Acta Alimentaria, 42(3), 417-427. doi:10.1556/aalim.42.2013.3.15

Chaimovitsh, D., Shachter, A., Abu-Abied, M., Rubin, B., Sadot, E., & Dudai, N. (2016). Herbicidal Activity of Monoterpenes Is Associated with Disruption of Microtubule Functionality and Membrane Integrity. Weed Science, 65(1), 19-30. doi:10.1614/ws-d-16-00044.1

Verdeguer, M., Castañeda, L. G., Torres-Pagan, N., Llorens-Molina, J. A., & Carrubba, A. (2020). Control of Erigeron bonariensis with Thymbra capitata, Mentha piperita, Eucalyptus camaldulensis, and Santolina chamaecyparissus Essential Oils. Molecules, 25(3), 562. doi:10.3390/molecules25030562

Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., & Guillemin, J.-P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44-49. doi:10.1016/j.cropro.2016.04.016

Mahmood, I., Imadi, S. R., Shazadi, K., Gul, A., & Hakeem, K. R. (2016). Effects of Pesticides on Environment. Plant, Soil and Microbes, 253-269. doi:10.1007/978-3-319-27455-3_13

Harker, K. N., & O’Donovan, J. T. (2013). Recent Weed Control, Weed Management, and Integrated Weed Management. Weed Technology, 27(1), 1-11. doi:10.1614/wt-d-12-00109.1

Olson, S. (2015). An Analysis of the Biopesticide Market Now and Where it is Going. Outlooks on Pest Management, 26(5), 203-206. doi:10.1564/v26_oct_04

Santamarina, M., Ibáñez, M., Marqués, M., Roselló, J., Giménez, S., & Blázquez, M. (2017). Bioactivity of essential oils in phytopathogenic and post-harvest fungi control. Natural Product Research, 31(22), 2675-2679. doi:10.1080/14786419.2017.1286479

Tuttolomondo, T., Dugo, G., Leto, C., Cicero, N., Tropea, A., Virga, G., … La Bella, S. (2015). Agronomical and chemical characterisation ofThymbra capitata(L.) Cav. biotypes from Sicily, Italy. Natural Product Research, 29(14), 1289-1299. doi:10.1080/14786419.2014.997726

Miguel, M. G., Gago, C., Antunes, M. D., Megías, C., Cortés-Giraldo, I., Vioque, J., … Figueiredo, A. C. (2015). Antioxidant and Antiproliferative Activities of the Essential Oils fromThymbra capitataandThymusSpecies Grown in Portugal. Evidence-Based Complementary and Alternative Medicine, 2015, 1-8. doi:10.1155/2015/851721

Karousou, R., Koureas, D. N., & Kokkini, S. (2005). Essential oil composition is related to the natural habitats: Coridothymus capitatus and Satureja thymbra in NATURA 2000 sites of Crete. Phytochemistry, 66(22), 2668-2673. doi:10.1016/j.phytochem.2005.09.020

Vasilakoglou, I., Dhima, K., Paschalidis, K., & Ritzoulis, C. (2013). Herbicidal potential onLolium rigidumof nineteen major essential oil components and their synergy. Journal of Essential Oil Research, 25(1), 1-10. doi:10.1080/10412905.2012.751054

Hazrati, H., Saharkhiz, M. J., Niakousari, M., & Moein, M. (2017). Natural herbicide activity of Satureja hortensis L. essential oil nanoemulsion on the seed germination and morphophysiological features of two important weed species. Ecotoxicology and Environmental Safety, 142, 423-430. doi:10.1016/j.ecoenv.2017.04.041

Pinheiro, P. F., Costa, A. V., Alves, T. de A., Galter, I. N., Pinheiro, C. A., Pereira, A. F., … Fontes, M. M. P. (2015). Phytotoxicity and Cytotoxicity of Essential Oil from Leaves of Plectranthus amboinicus, Carvacrol, and Thymol in Plant Bioassays. Journal of Agricultural and Food Chemistry, 63(41), 8981-8990. doi:10.1021/acs.jafc.5b03049

Tworkoski, T. (2002). Herbicide effects of essential oils. Weed Science, 50(4), 425-431. doi:10.1614/0043-1745(2002)050[0425:heoeo]2.0.co;2

Benvenuti, S., Cioni, P. L., Flamini, G., & Pardossi, A. (2017). Weeds for weed control: Asteraceae essential oils as natural herbicides. Weed Research, 57(5), 342-353. doi:10.1111/wre.12266

N. MALPASSI, R. (2006). Herbicide effects on cuticle ultrastructure in Eleusine indica and Portulaca oleracea. BIOCELL, 30(1), 51-56. doi:10.32604/biocell.2006.30.051

Schreiber, L. (1995). A mechanistic approach towards surfactant/wax interactions: Effects of octaethyleneglycolmonododecylether on sorption and diffusion of organic chemicals in reconstituted cuticular wax of barley leaves. Pesticide Science, 45(1), 1-11. doi:10.1002/ps.2780450102

Hull, H. M., Morton, H. L., & Wharrie, J. R. (1975). Environmental influences on cuticle development and resultant foliar penetration. The Botanical Review, 41(4), 421-452. doi:10.1007/bf02860832

Kern, A. J., Jackson, L. L., & Dyer, W. E. (1997). Fatty acid and wax biosynthesis in susceptible and triallate-resistantAvena fatuaL. Pesticide Science, 51(1), 21-26. doi:10.1002/(sici)1096-9063(199709)51:1<21::aid-ps591>3.0.co;2-9

SANYAL, D., BHOWMIK, P. C., & REDDY, K. N. (2008). Effects of surfactants on primisulfuron activity in barnyardgrass (Echinochloa crus-galli [L.] Beauv.) and green foxtail (Setaria viridis [L.] Beauv.). Weed Biology and Management, 8(1), 46-53. doi:10.1111/j.1445-6664.2007.00273.x

Principles of Soil and Plant Water Relations. (2014). doi:10.1016/c2013-0-12871-1

Kim, H. K., Park, J., & Hwang, I. (2014). Investigating water transport through the xylem network in vascular plants. Journal of Experimental Botany, 65(7), 1895-1904. doi:10.1093/jxb/eru075

Norris, R. F. (1974). PENETRATION OF 2,4-D IN RELATION TO CUTICLE THICKNESS. American Journal of Botany, 61(1), 74-79. doi:10.1002/j.1537-2197.1974.tb06029.x

Schönherr, J., & Riederer, M. (1989). Foliar Penetration and Accumulation of Organic Chemicals in Plant Cuticles. Reviews of Environmental Contamination and Toxicology, 1-70. doi:10.1007/978-1-4613-8850-0_1

GOURET, E., ROHR, R., & CHAMEL, A. (1993). Ultrastructure and chemical composition of some isolated plant cuticles in relation to their permeability to the herbicide, diuron. New Phytologist, 124(3), 423-431. doi:10.1111/j.1469-8137.1993.tb03832.x

Riederer, M., & Schönherr, J. (1985). Accumulation and transport of (2,4-dichlorophenoxy)acetic acid in plant cuticles. Ecotoxicology and Environmental Safety, 9(2), 196-208. doi:10.1016/0147-6513(85)90022-3

Melo, C. R., Picanço, M. C., Santos, A. A., Santos, I. B., Pimentel, M. F., Santos, A. C. C., … Bacci, L. (2018). Toxicity of essential oils of Lippia gracilis chemotypes and their major compounds on Diaphania hyalinata and non-target species. Crop Protection, 104, 47-51. doi:10.1016/j.cropro.2017.10.013

Araniti, F., Graña, E., Krasuska, U., Bogatek, R., Reigosa, M. J., Abenavoli, M. R., & Sánchez-Moreiras, A. M. (2016). Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance. PLOS ONE, 11(8), e0160202. doi:10.1371/journal.pone.0160202

Smyth, D. R. (2016). Helical growth in plant organs: mechanisms and significance. Development, 143(18), 3272-3282. doi:10.1242/dev.134064

Graña, E., Costas-Gil, A., Longueira, S., Celeiro, M., Teijeira, M., Reigosa, M. J., & Sánchez-Moreiras, A. M. (2017). Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. Journal of Plant Physiology, 218, 45-55. doi:10.1016/j.jplph.2017.07.007

Verbelen, J.-P., Le, J., Vissenberg, K., De Cnodder, T., Vandenbussche, F., Sugimoto, K., & Van Der Straeten, D. (2008). Microtubules And The Control Of Cell Elongation In Arabidopsis Roots. NATO Science for Peace and Security Series C: Environmental Security, 73-90. doi:10.1007/978-1-4020-8843-8_4

Blume, Y. B., Krasylenko, Y. A., & Yemets, A. I. (2012). Effects of phytohormones on the cytoskeleton of the plant cell. Russian Journal of Plant Physiology, 59(4), 515-529. doi:10.1134/s1021443712040036

López-González, D., Costas-Gil, A., Reigosa, M. J., Araniti, F., & Sánchez-Moreiras, A. M. (2020). A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiology and Biochemistry, 151, 378-390. doi:10.1016/j.plaphy.2020.03.047

The International Herbicide-Resistant Weed Databasewww.weedscience.org

Angelini, L. G., Carpanese, G., Cioni, P. L., Morelli, I., Macchia, M., & Flamini, G. (2003). Essential Oils from Mediterranean Lamiaceae as Weed Germination Inhibitors. Journal of Agricultural and Food Chemistry, 51(21), 6158-6164. doi:10.1021/jf0210728

DÍAZ-TIELAS, C., GRAÑA, E., SOTELO, T., REIGOSA, M. J., & SÁNCHEZ-MOREIRAS, A. M. (2012). The natural compound trans-chalcone induces programmed cell death in Arabidopsis thaliana roots. Plant, Cell & Environment, 35(8), 1500-1517. doi:10.1111/j.1365-3040.2012.02506.x






This item appears in the following Collection(s)

Show full item record