Mostrar el registro sencillo del ítem
dc.contributor.author | Gregori Verdú, Santiago | es_ES |
dc.contributor.author | Gil-Romero, Jaime | es_ES |
dc.contributor.author | Tur Valiente, Manuel | es_ES |
dc.contributor.author | Tarancón Caro, José Enrique | es_ES |
dc.contributor.author | Fuenmayor Fernández, Francisco-Javier | es_ES |
dc.date.accessioned | 2021-04-01T03:31:19Z | |
dc.date.available | 2021-04-01T03:31:19Z | |
dc.date.issued | 2020-10-15 | es_ES |
dc.identifier.issn | 0141-0296 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164815 | |
dc.description.abstract | [EN] The transition between catenary tensioning sections is accomplished smoothly by overlapping a number of spans in each catenary section. This work presents an analysis of the overlap section in a high-speed railway catenary based on numerical simulations. The paper studies the influence on the system¿s dynamic behaviour of features such as double cantilevers and tensioning devices efficiency. Four and five-span overlaps are compared and the effect of train speed and overlap contact wire geometry are also analysed. Finally, an entire catenary section is optimised by Bayesian Optimisation techniques, leading to a catenary configuration with an interaction force with a standard deviation notably lower than that provided by the nominal catenary design. | es_ES |
dc.description.sponsorship | The authors would like to acknowledge the financial support received from the Regional Government of Valencia (PROMETEO/2016/007) and the Spanish Ministry of Economy, Industry and Competitiveness (TRA2017-84736-R). The funds received jointly from the Regional Government of Valencia and the European Social Fund under Grant APOSTD/2019/205 are also acknowledged. The authors wish to express their gratitude for the comments and useful information provided by Jose Antonio Martinez Lopez and the `Sociedad Espanola de Montajes Industriales' (SEMI Group). | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Engineering Structures | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Railway catenary | es_ES |
dc.subject | Overlap section | es_ES |
dc.subject | Multiple pantograph operation | es_ES |
dc.subject | Tensioning device | es_ES |
dc.subject | Bayesian optimisation | es_ES |
dc.subject.classification | INGENIERIA MECANICA | es_ES |
dc.title | Analysis of the overlap section in a high-speed railway catenary by means of numerical simulations | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.engstruct.2020.110963 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TRA2017-84736-R/ES/DESARROLLO DE UN SISTEMA DE ENSAYOS HIL DE PANTOGRAFOS CON CATENARIAS VIRTUALES/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/ | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F205/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials | es_ES |
dc.description.bibliographicCitation | Gregori Verdú, S.; Gil-Romero, J.; Tur Valiente, M.; Tarancón Caro, JE.; Fuenmayor Fernández, F. (2020). Analysis of the overlap section in a high-speed railway catenary by means of numerical simulations. Engineering Structures. 221:1-14. https://doi.org/10.1016/j.engstruct.2020.110963 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.engstruct.2020.110963 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 14 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 221 | es_ES |
dc.relation.pasarela | S\415466 | es_ES |
dc.contributor.funder | European Social Fund | es_ES |
dc.contributor.funder | Generalitat Valenciana | es_ES |
dc.contributor.funder | Agencia Estatal de Investigación | es_ES |
dc.description.references | Bruni, S., Ambrosio, J., Carnicero, A., Cho, Y. H., Finner, L., Ikeda, M., … Zhang, W. (2014). The results of the pantograph–catenary interaction benchmark. Vehicle System Dynamics, 53(3), 412-435. doi:10.1080/00423114.2014.953183 | es_ES |
dc.description.references | SHIMIZU, M., & FUJII, Y. (2000). Improvement of Structure of Contact Wire on Overlap Sections of Shinkansen. Quarterly Report of RTRI, 41(4), 159-162. doi:10.2219/rtriqr.41.159 | es_ES |
dc.description.references | Harell P, Drugge L, Reijm M. Multiple pantograph operation-effects of section overlaps. In: The dynamics of vehicles on roads and on tracks. Proceedings of the 18th IAVSD symposium held in Kanagawa, Japan, 2004. | es_ES |
dc.description.references | Harell P, Drugge L, Reijm M. Study of critical sections in catenary systems during multiple pantograph operation. Proc Inst Mech Eng, Part F: J Rail Rapid Transit. 2005;219(4):203–11. | es_ES |
dc.description.references | Massat, J. P., Laine, J. P., & Bobillot, A. (2006). Pantograph–catenary dynamics simulation. Vehicle System Dynamics, 44(sup1), 551-559. doi:10.1080/00423110600875443 | es_ES |
dc.description.references | Mei, G., Zhang, W., Zhao, H., & Zhang, L. (2006). A hybrid method to simulate the interaction of pantograph and catenary on overlap span. Vehicle System Dynamics, 44(sup1), 571-580. doi:10.1080/00423110600875559 | es_ES |
dc.description.references | Benet J, Alberto A, Arias E, Rojo T. A mathematical model of the pantograph-catenary dynamic interaction with several contact wires. Int J Appl Math. 2007;37 (2). | es_ES |
dc.description.references | Tur, M., García, E., Baeza, L., & Fuenmayor, F. J. (2014). A 3D absolute nodal coordinate finite element model to compute the initial configuration of a railway catenary. Engineering Structures, 71, 234-243. doi:10.1016/j.engstruct.2014.04.015 | es_ES |
dc.description.references | Gregori, S., Tur, M., Nadal, E., Aguado, J. V., Fuenmayor, F. J., & Chinesta, F. (2017). Fast simulation of the pantograph–catenary dynamic interaction. Finite Elements in Analysis and Design, 129, 1-13. doi:10.1016/j.finel.2017.01.007 | es_ES |
dc.description.references | Gregori, S., Tur, M., Nadal, E., & Fuenmayor, F. J. (2017). An approach to geometric optimisation of railway catenaries. Vehicle System Dynamics, 56(8), 1162-1186. doi:10.1080/00423114.2017.1407434 | es_ES |
dc.description.references | Song, Y., Liu, Z., Wang, H., Lu, X., & Zhang, J. (2015). Nonlinear modelling of high-speed catenary based on analytical expressions of cable and truss elements. Vehicle System Dynamics, 53(10), 1455-1479. doi:10.1080/00423114.2015.1051548 | es_ES |
dc.description.references | EN 50318. Railway applications. Current collection systems. Validation of simulation of the dynamic interaction between pantograph and overhead contact line. European Union Agency for Railways, 2003. | es_ES |
dc.description.references | Hilber, H. M., Hughes, T. J. R., & Taylor, R. L. (1977). Improved numerical dissipation for time integration algorithms in structural dynamics. Earthquake Engineering & Structural Dynamics, 5(3), 283-292. doi:10.1002/eqe.4290050306 | es_ES |
dc.description.references | EN 50367. Railway applications. Current collection systems. Technical criteria for the interaction between pantograph and overhead line. European Committee for Electrotechnical Standardization, 2012. | es_ES |
dc.description.references | Collina, A., & Bruni, S. (2002). Numerical Simulation of Pantograph-Overhead Equipment Interaction. Vehicle System Dynamics, 38(4), 261-291. doi:10.1076/vesd.38.4.261.8286 | es_ES |
dc.description.references | Cho, Y. H., Lee, K., Park, Y., Kang, B., & Kim, K. (2010). Influence of contact wire pre-sag on the dynamics of pantograph–railway catenary. International Journal of Mechanical Sciences, 52(11), 1471-1490. doi:10.1016/j.ijmecsci.2010.04.002 | es_ES |