- -

Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Lo-Iacono-Ferreira, Vanesa G. es_ES
dc.contributor.author Viñoles-Cebolla, Rosario es_ES
dc.contributor.author Bastante-Ceca, Maria-José es_ES
dc.contributor.author Capuz-Rizo, Salvador F. es_ES
dc.date.accessioned 2021-04-01T03:31:39Z
dc.date.available 2021-04-01T03:31:39Z
dc.date.issued 2020-01-20 es_ES
dc.identifier.issn 0959-6526 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164820
dc.description.abstract [EN] The increase in international trade due to globalization is evident in southeast Spain, which has become the top exporter of fruit and vegetables. Countries within the European Union, such as Germany and France, emphasize the sustainability and environmental impacts of these products. Hence, a greater understanding of the environmental implications of transporting fruit and vegetables between their origin and their destination might improve the sustainability of this commercial activity. The concept of a carbon footprint is a recognized environmental indicator that can be used for life cycle analysis. Here, a rigorous carbon footprint assessment was developed to examine the impact of using cardboard box containers to store and transport 1,000 t of fruit and vegetable products by road from their origin in Almería, Spain, to a destination market. The assessment included the fabrication of the cardboard boxes, the service they provide while transporting the products to the distribution center of the destination, and the end-of-life of the boxes for the six main products grown in Almería. The results showed that storing and transporting 1,000 t of product by road emits between 58 t and 130 t of CO2e depending on the fruit or vegetable type and the destination market. The implications of the end-of-life scenarios with respect to the destination are also discussed. Furthermore, a sensitivity analysis was conducted for the transport distance. Lastly, biogenic CO2 production was also assessed according to standard carbon footprint assessment method. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Journal of Cleaner Production es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Carbon footprint es_ES
dc.subject Cardboard boxes es_ES
dc.subject Fruit and vegetables es_ES
dc.subject Export: Life cycle assessment es_ES
dc.subject ISO 14067 es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.jclepro.2019.118784 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria es_ES
dc.description.bibliographicCitation Lo-Iacono-Ferreira, VG.; Viñoles-Cebolla, R.; Bastante-Ceca, M.; Capuz-Rizo, SF. (2020). Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis. Journal of Cleaner Production. 244:1-12. https://doi.org/10.1016/j.jclepro.2019.118784 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.jclepro.2019.118784 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 12 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 244 es_ES
dc.relation.pasarela S\399722 es_ES
dc.contributor.funder Instituto para la Producción Sostenible es_ES
dc.description.references Albrecht, S., Brandstetter, P., Beck, T., Fullana-i-Palmer, P., Grönman, K., Baitz, M., … Fischer, M. (2013). An extended life cycle analysis of packaging systems for fruit and vegetable transport in Europe. The International Journal of Life Cycle Assessment, 18(8), 1549-1567. doi:10.1007/s11367-013-0590-4 es_ES
dc.description.references Atallah, S. S., Gómez, M. I., & Björkman, T. (2014). Localization effects for a fresh vegetable product supply chain: Broccoli in the eastern United States. Food Policy, 49, 151-159. doi:10.1016/j.foodpol.2014.07.005 es_ES
dc.description.references Borsato, E., Tarolli, P., & Marinello, F. (2018). Sustainable patterns of main agricultural products combining different footprint parameters. Journal of Cleaner Production, 179, 357-367. doi:10.1016/j.jclepro.2018.01.044 es_ES
dc.description.references Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F. (2016). Fresh food sustainable distribution: cost, delivery time and carbon footprint three-objective optimization. Journal of Food Engineering, 174, 56-67. doi:10.1016/j.jfoodeng.2015.11.014 es_ES
dc.description.references Chonhenchob, V., & Singh, S. P. (2003). A comparison of corrugated boxes and reusable plastic containers for mango distribution. Packaging Technology and Science, 16(6), 231-237. doi:10.1002/pts.630 es_ES
dc.description.references Chonhenchob, V., & Singh, S. P. (2005). Packaging performance comparison for distribution and export of papaya fruit. Packaging Technology and Science, 18(3), 125-131. doi:10.1002/pts.681 es_ES
dc.description.references Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: the case study of tomato products supply chain. Journal of Cleaner Production, 78, 121-130. doi:10.1016/j.jclepro.2014.04.083 es_ES
dc.description.references Finkbeiner, M. (2009). Carbon footprinting—opportunities and threats. The International Journal of Life Cycle Assessment, 14(2), 91-94. doi:10.1007/s11367-009-0064-x es_ES
dc.description.references Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. (2019). Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of The Total Environment, 664, 1005-1019. doi:10.1016/j.scitotenv.2019.02.004 es_ES
dc.description.references Levi, M., Cortesi, S., Vezzoli, C., & Salvia, G. (2011). A Comparative Life Cycle Assessment of Disposable and Reusable Packaging for the Distribution of Italian Fruit and Vegetables. Packaging Technology and Science, 24(7), 387-400. doi:10.1002/pts.946 es_ES
dc.description.references Manfredi, M., & Vignali, G. (2014). Life cycle assessment of a packaged tomato puree: a comparison of environmental impacts produced by different life cycle phases. Journal of Cleaner Production, 73, 275-284. doi:10.1016/j.jclepro.2013.10.010 es_ES
dc.description.references Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Berrada, A. (2017). Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management. Journal of Cleaner Production, 154, 602-613. doi:10.1016/j.jclepro.2017.04.033 es_ES
dc.description.references Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Chau, K. (2017). Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - A case study in Tehran Metropolis of Iran. Journal of Cleaner Production, 148, 427-440. doi:10.1016/j.jclepro.2017.01.172 es_ES
dc.description.references Neugebauer, S., Martinez-Blanco, J., Scheumann, R., & Finkbeiner, M. (2015). Enhancing the practical implementation of life cycle sustainability assessment – proposal of a Tiered approach. Journal of Cleaner Production, 102, 165-176. doi:10.1016/j.jclepro.2015.04.053 es_ES
dc.description.references Parajuli, R., Thoma, G., & Matlock, M. D. (2019). Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Science of The Total Environment, 650, 2863-2879. doi:10.1016/j.scitotenv.2018.10.019 es_ES
dc.description.references Pattara, C., Salomone, R., & Cichelli, A. (2016). Carbon footprint of extra virgin olive oil: a comparative and driver analysis of different production processes in Centre Italy. Journal of Cleaner Production, 127, 533-547. doi:10.1016/j.jclepro.2016.03.152 es_ES
dc.description.references Payen, S., Basset-Mens, C., & Perret, S. (2015). LCA of local and imported tomato: an energy and water trade-off. Journal of Cleaner Production, 87, 139-148. doi:10.1016/j.jclepro.2014.10.007 es_ES
dc.description.references Pérez Neira, D., Soler Montiel, M., Delgado Cabeza, M., & Reigada, A. (2018). Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context. Science of The Total Environment, 628-629, 1627-1636. doi:10.1016/j.scitotenv.2018.02.127 es_ES
dc.description.references Pérez-Neira, D., & Grollmus-Venegas, A. (2018). Life-cycle energy assessment and carbon footprint of peri-urban horticulture. A comparative case study of local food systems in Spain. Landscape and Urban Planning, 172, 60-68. doi:10.1016/j.landurbplan.2018.01.001 es_ES
dc.description.references Rivera-Méndez, Y. D., Rodríguez, D. T., & Romero, H. M. (2017). Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. Journal of Cleaner Production, 149, 743-750. doi:10.1016/j.jclepro.2017.02.149 es_ES
dc.description.references Röös, E., & Karlsson, H. (2013). Effect of eating seasonal on the carbon footprint of Swedish vegetable consumption. Journal of Cleaner Production, 59, 63-72. doi:10.1016/j.jclepro.2013.06.035 es_ES
dc.description.references Sanyé-Mengual, E., Cerón-Palma, I., Oliver-Solà, J., Montero, J. I., & Rieradevall, J. (2012). Environmental analysis of the logistics of agricultural products from roof top greenhouses in Mediterranean urban areas. Journal of the Science of Food and Agriculture, 93(1), 100-109. doi:10.1002/jsfa.5736 es_ES
dc.description.references Shabanzadeh-Khoshrody, M., Azadi, H., Khajooeipour, A., & Nabavi-Pelesaraei, A. (2016). Analytical investigation of the effects of dam construction on the productivity and efficiency of farmers. Journal of Cleaner Production, 135, 549-557. doi:10.1016/j.jclepro.2016.06.145 es_ES
dc.description.references Singh, S. P., Chonhenchob, V., & Singh, J. (2006). Life cycle inventory and analysis of re-usable plastic containers and display-ready corrugated containers used for packaging fresh fruits and vegetables. Packaging Technology and Science, 19(5), 279-293. doi:10.1002/pts.731 es_ES
dc.description.references Soode, E., Lampert, P., Weber-Blaschke, G., & Richter, K. (2015). Carbon footprints of the horticultural products strawberries, asparagus, roses and orchids in Germany. Journal of Cleaner Production, 87, 168-179. doi:10.1016/j.jclepro.2014.09.035 es_ES
dc.description.references Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218-1230. doi:10.1007/s11367-016-1087-8 es_ES
dc.subject.ods 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos es_ES
dc.subject.ods 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible es_ES
dc.subject.ods 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem