Mostrar el registro sencillo del ítem
dc.contributor.author | Lo-Iacono-Ferreira, Vanesa G. | es_ES |
dc.contributor.author | Viñoles-Cebolla, Rosario | es_ES |
dc.contributor.author | Bastante-Ceca, Maria-José | es_ES |
dc.contributor.author | Capuz-Rizo, Salvador F. | es_ES |
dc.date.accessioned | 2021-04-01T03:31:39Z | |
dc.date.available | 2021-04-01T03:31:39Z | |
dc.date.issued | 2020-01-20 | es_ES |
dc.identifier.issn | 0959-6526 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/164820 | |
dc.description.abstract | [EN] The increase in international trade due to globalization is evident in southeast Spain, which has become the top exporter of fruit and vegetables. Countries within the European Union, such as Germany and France, emphasize the sustainability and environmental impacts of these products. Hence, a greater understanding of the environmental implications of transporting fruit and vegetables between their origin and their destination might improve the sustainability of this commercial activity. The concept of a carbon footprint is a recognized environmental indicator that can be used for life cycle analysis. Here, a rigorous carbon footprint assessment was developed to examine the impact of using cardboard box containers to store and transport 1,000 t of fruit and vegetable products by road from their origin in Almería, Spain, to a destination market. The assessment included the fabrication of the cardboard boxes, the service they provide while transporting the products to the distribution center of the destination, and the end-of-life of the boxes for the six main products grown in Almería. The results showed that storing and transporting 1,000 t of product by road emits between 58 t and 130 t of CO2e depending on the fruit or vegetable type and the destination market. The implications of the end-of-life scenarios with respect to the destination are also discussed. Furthermore, a sensitivity analysis was conducted for the transport distance. Lastly, biogenic CO2 production was also assessed according to standard carbon footprint assessment method. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Journal of Cleaner Production | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Carbon footprint | es_ES |
dc.subject | Cardboard boxes | es_ES |
dc.subject | Fruit and vegetables | es_ES |
dc.subject | Export: Life cycle assessment | es_ES |
dc.subject | ISO 14067 | es_ES |
dc.subject.classification | PROYECTOS DE INGENIERIA | es_ES |
dc.title | Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.jclepro.2019.118784 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria | es_ES |
dc.description.bibliographicCitation | Lo-Iacono-Ferreira, VG.; Viñoles-Cebolla, R.; Bastante-Ceca, M.; Capuz-Rizo, SF. (2020). Transport of Spanish fruit and vegetables in cardboard boxes: A carbon footprint analysis. Journal of Cleaner Production. 244:1-12. https://doi.org/10.1016/j.jclepro.2019.118784 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.jclepro.2019.118784 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 12 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 244 | es_ES |
dc.relation.pasarela | S\399722 | es_ES |
dc.contributor.funder | Instituto para la Producción Sostenible | es_ES |
dc.description.references | Albrecht, S., Brandstetter, P., Beck, T., Fullana-i-Palmer, P., Grönman, K., Baitz, M., … Fischer, M. (2013). An extended life cycle analysis of packaging systems for fruit and vegetable transport in Europe. The International Journal of Life Cycle Assessment, 18(8), 1549-1567. doi:10.1007/s11367-013-0590-4 | es_ES |
dc.description.references | Atallah, S. S., Gómez, M. I., & Björkman, T. (2014). Localization effects for a fresh vegetable product supply chain: Broccoli in the eastern United States. Food Policy, 49, 151-159. doi:10.1016/j.foodpol.2014.07.005 | es_ES |
dc.description.references | Borsato, E., Tarolli, P., & Marinello, F. (2018). Sustainable patterns of main agricultural products combining different footprint parameters. Journal of Cleaner Production, 179, 357-367. doi:10.1016/j.jclepro.2018.01.044 | es_ES |
dc.description.references | Bortolini, M., Faccio, M., Ferrari, E., Gamberi, M., & Pilati, F. (2016). Fresh food sustainable distribution: cost, delivery time and carbon footprint three-objective optimization. Journal of Food Engineering, 174, 56-67. doi:10.1016/j.jfoodeng.2015.11.014 | es_ES |
dc.description.references | Chonhenchob, V., & Singh, S. P. (2003). A comparison of corrugated boxes and reusable plastic containers for mango distribution. Packaging Technology and Science, 16(6), 231-237. doi:10.1002/pts.630 | es_ES |
dc.description.references | Chonhenchob, V., & Singh, S. P. (2005). Packaging performance comparison for distribution and export of papaya fruit. Packaging Technology and Science, 18(3), 125-131. doi:10.1002/pts.681 | es_ES |
dc.description.references | Del Borghi, A., Gallo, M., Strazza, C., & Del Borghi, M. (2014). An evaluation of environmental sustainability in the food industry through Life Cycle Assessment: the case study of tomato products supply chain. Journal of Cleaner Production, 78, 121-130. doi:10.1016/j.jclepro.2014.04.083 | es_ES |
dc.description.references | Finkbeiner, M. (2009). Carbon footprinting—opportunities and threats. The International Journal of Life Cycle Assessment, 14(2), 91-94. doi:10.1007/s11367-009-0064-x | es_ES |
dc.description.references | Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. (2019). Combined life cycle assessment and artificial intelligence for prediction of output energy and environmental impacts of sugarcane production. Science of The Total Environment, 664, 1005-1019. doi:10.1016/j.scitotenv.2019.02.004 | es_ES |
dc.description.references | Levi, M., Cortesi, S., Vezzoli, C., & Salvia, G. (2011). A Comparative Life Cycle Assessment of Disposable and Reusable Packaging for the Distribution of Italian Fruit and Vegetables. Packaging Technology and Science, 24(7), 387-400. doi:10.1002/pts.946 | es_ES |
dc.description.references | Manfredi, M., & Vignali, G. (2014). Life cycle assessment of a packaged tomato puree: a comparison of environmental impacts produced by different life cycle phases. Journal of Cleaner Production, 73, 275-284. doi:10.1016/j.jclepro.2013.10.010 | es_ES |
dc.description.references | Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Berrada, A. (2017). Prognostication of energy use and environmental impacts for recycle system of municipal solid waste management. Journal of Cleaner Production, 154, 602-613. doi:10.1016/j.jclepro.2017.04.033 | es_ES |
dc.description.references | Nabavi-Pelesaraei, A., Bayat, R., Hosseinzadeh-Bandbafha, H., Afrasyabi, H., & Chau, K. (2017). Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management - A case study in Tehran Metropolis of Iran. Journal of Cleaner Production, 148, 427-440. doi:10.1016/j.jclepro.2017.01.172 | es_ES |
dc.description.references | Neugebauer, S., Martinez-Blanco, J., Scheumann, R., & Finkbeiner, M. (2015). Enhancing the practical implementation of life cycle sustainability assessment – proposal of a Tiered approach. Journal of Cleaner Production, 102, 165-176. doi:10.1016/j.jclepro.2015.04.053 | es_ES |
dc.description.references | Parajuli, R., Thoma, G., & Matlock, M. D. (2019). Environmental sustainability of fruit and vegetable production supply chains in the face of climate change: A review. Science of The Total Environment, 650, 2863-2879. doi:10.1016/j.scitotenv.2018.10.019 | es_ES |
dc.description.references | Pattara, C., Salomone, R., & Cichelli, A. (2016). Carbon footprint of extra virgin olive oil: a comparative and driver analysis of different production processes in Centre Italy. Journal of Cleaner Production, 127, 533-547. doi:10.1016/j.jclepro.2016.03.152 | es_ES |
dc.description.references | Payen, S., Basset-Mens, C., & Perret, S. (2015). LCA of local and imported tomato: an energy and water trade-off. Journal of Cleaner Production, 87, 139-148. doi:10.1016/j.jclepro.2014.10.007 | es_ES |
dc.description.references | Pérez Neira, D., Soler Montiel, M., Delgado Cabeza, M., & Reigada, A. (2018). Energy use and carbon footprint of the tomato production in heated multi-tunnel greenhouses in Almeria within an exporting agri-food system context. Science of The Total Environment, 628-629, 1627-1636. doi:10.1016/j.scitotenv.2018.02.127 | es_ES |
dc.description.references | Pérez-Neira, D., & Grollmus-Venegas, A. (2018). Life-cycle energy assessment and carbon footprint of peri-urban horticulture. A comparative case study of local food systems in Spain. Landscape and Urban Planning, 172, 60-68. doi:10.1016/j.landurbplan.2018.01.001 | es_ES |
dc.description.references | Rivera-Méndez, Y. D., Rodríguez, D. T., & Romero, H. M. (2017). Carbon footprint of the production of oil palm (Elaeis guineensis) fresh fruit bunches in Colombia. Journal of Cleaner Production, 149, 743-750. doi:10.1016/j.jclepro.2017.02.149 | es_ES |
dc.description.references | Röös, E., & Karlsson, H. (2013). Effect of eating seasonal on the carbon footprint of Swedish vegetable consumption. Journal of Cleaner Production, 59, 63-72. doi:10.1016/j.jclepro.2013.06.035 | es_ES |
dc.description.references | Sanyé-Mengual, E., Cerón-Palma, I., Oliver-Solà, J., Montero, J. I., & Rieradevall, J. (2012). Environmental analysis of the logistics of agricultural products from roof top greenhouses in Mediterranean urban areas. Journal of the Science of Food and Agriculture, 93(1), 100-109. doi:10.1002/jsfa.5736 | es_ES |
dc.description.references | Shabanzadeh-Khoshrody, M., Azadi, H., Khajooeipour, A., & Nabavi-Pelesaraei, A. (2016). Analytical investigation of the effects of dam construction on the productivity and efficiency of farmers. Journal of Cleaner Production, 135, 549-557. doi:10.1016/j.jclepro.2016.06.145 | es_ES |
dc.description.references | Singh, S. P., Chonhenchob, V., & Singh, J. (2006). Life cycle inventory and analysis of re-usable plastic containers and display-ready corrugated containers used for packaging fresh fruits and vegetables. Packaging Technology and Science, 19(5), 279-293. doi:10.1002/pts.731 | es_ES |
dc.description.references | Soode, E., Lampert, P., Weber-Blaschke, G., & Richter, K. (2015). Carbon footprints of the horticultural products strawberries, asparagus, roses and orchids in Germany. Journal of Cleaner Production, 87, 168-179. doi:10.1016/j.jclepro.2014.09.035 | es_ES |
dc.description.references | Wernet, G., Bauer, C., Steubing, B., Reinhard, J., Moreno-Ruiz, E., & Weidema, B. (2016). The ecoinvent database version 3 (part I): overview and methodology. The International Journal of Life Cycle Assessment, 21(9), 1218-1230. doi:10.1007/s11367-016-1087-8 | es_ES |
dc.subject.ods | 08.- Fomentar el crecimiento económico sostenido, inclusivo y sostenible, el empleo pleno y productivo, y el trabajo decente para todos | es_ES |
dc.subject.ods | 02.- Poner fin al hambre, conseguir la seguridad alimentaria y una mejor nutrición, y promover la agricultura sostenible | es_ES |
dc.subject.ods | 15.- Proteger, restaurar y promover la utilización sostenible de los ecosistemas terrestres, gestionar de manera sostenible los bosques, combatir la desertificación y detener y revertir la degradación de la tierra, y frenar la pérdida de diversidad biológica | es_ES |