Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011
Ruiz-Gironés, E., & Sarrate, J. (2010). Generation of structured hexahedral meshes in volumes with holes. Finite Elements in Analysis and Design, 46(10), 792-804. doi:10.1016/j.finel.2010.04.005
Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579
[+]
Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011
Ruiz-Gironés, E., & Sarrate, J. (2010). Generation of structured hexahedral meshes in volumes with holes. Finite Elements in Analysis and Design, 46(10), 792-804. doi:10.1016/j.finel.2010.04.005
Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579
Parvizian, J., Düster, A., & Rank, E. (2007). Finite cell method. Computational Mechanics, 41(1), 121-133. doi:10.1007/s00466-007-0173-y
Düster, A., Parvizian, J., Yang, Z., & Rank, E. (2008). The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering, 197(45-48), 3768-3782. doi:10.1016/j.cma.2008.02.036
Nadal, E., Ródenas, J. J., Albelda, J., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2013). Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization. Abstract and Applied Analysis, 2013, 1-19. doi:10.1155/2013/953786
Nadal, E., Ródenas, J. J., Sánchez-Orgaz, E. M., López-Real, S., & Martí-Pellicer, J. (2014). Sobre la utilización de códigos de elementos finitos basados en mallados cartesianos en optimización estructural. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 155-165. doi:10.1016/j.rimni.2013.04.009
Giovannelli, L., Ródenas, J. J., Navarro-Jiménez, J. M., & Tur, M. (2017). Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elements in Analysis and Design, 136, 37-57. doi:10.1016/j.finel.2017.07.010
Schillinger, D., & Ruess, M. (2014). The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Archives of Computational Methods in Engineering, 22(3), 391-455. doi:10.1007/s11831-014-9115-y
Burman, E., Claus, S., Hansbo, P., Larson, M. G., & Massing, A. (2014). CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7), 472-501. doi:10.1002/nme.4823
Tur, M., Albelda, J., Marco, O., & Ródenas, J. J. (2015). Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Computer Methods in Applied Mechanics and Engineering, 296, 352-375. doi:10.1016/j.cma.2015.08.001
Tur, M., Albelda, J., Nadal, E., & Ródenas, J. J. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 98(6), 399-417. doi:10.1002/nme.4629
De Prenter, F., Verhoosel, C. V., van Zwieten, G. J., & van Brummelen, E. H. (2017). Condition number analysis and preconditioning of the finite cell method. Computer Methods in Applied Mechanics and Engineering, 316, 297-327. doi:10.1016/j.cma.2016.07.006
Berger-Vergiat, L., Waisman, H., Hiriyur, B., Tuminaro, R., & Keyes, D. (2011). Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods. International Journal for Numerical Methods in Engineering, 90(3), 311-328. doi:10.1002/nme.3318
Menk, A., & Bordas, S. P. A. (2010). A robust preconditioning technique for the extended finite element method. International Journal for Numerical Methods in Engineering, 85(13), 1609-1632. doi:10.1002/nme.3032
Dauge, M., Düster, A., & Rank, E. (2015). Theoretical and Numerical Investigation of the Finite Cell Method. Journal of Scientific Computing, 65(3), 1039-1064. doi:10.1007/s10915-015-9997-3
Elfverson, D., Larson, M. G., & Larsson, K. (2018). CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences, 5(1). doi:10.1186/s40323-018-0099-2
Verhoosel, C. V., van Zwieten, G. J., van Rietbergen, B., & de Borst, R. (2015). Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Computer Methods in Applied Mechanics and Engineering, 284, 138-164. doi:10.1016/j.cma.2014.07.009
Burman, E. (2010). Ghost penalty. Comptes Rendus Mathematique, 348(21-22), 1217-1220. doi:10.1016/j.crma.2010.10.006
BadiaS VerdugoF MartínAF. The aggregated unfitted finite element method for elliptic problems;2017.
Jomo, J. N., de Prenter, F., Elhaddad, M., D’Angella, D., Verhoosel, C. V., Kollmannsberger, S., … Rank, E. (2019). Robust and parallel scalable iterative solutions for large-scale finite cell analyses. Finite Elements in Analysis and Design, 163, 14-30. doi:10.1016/j.finel.2019.01.009
Béchet, É., Moës, N., & Wohlmuth, B. (2008). A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. International Journal for Numerical Methods in Engineering, 78(8), 931-954. doi:10.1002/nme.2515
Hautefeuille, M., Annavarapu, C., & Dolbow, J. E. (2011). Robust imposition of Dirichlet boundary conditions on embedded surfaces. International Journal for Numerical Methods in Engineering, 90(1), 40-64. doi:10.1002/nme.3306
Hansbo, P., Lovadina, C., Perugia, I., & Sangalli, G. (2005). A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numerische Mathematik, 100(1), 91-115. doi:10.1007/s00211-005-0587-4
Burman, E., & Hansbo, P. (2012). Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Applied Numerical Mathematics, 62(4), 328-341. doi:10.1016/j.apnum.2011.01.008
Gerstenberger, A., & Wall, W. A. (2008). An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 197(19-20), 1699-1714. doi:10.1016/j.cma.2007.07.002
AxelssonO. Iterative solution methods;1994.
Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics, 63(1-3), 139-148. doi:10.1016/0377-0427(95)00057-7
Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206
Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702
Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309
Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837
Xiao, Q. Z., & Karihaloo, B. L. (s. f.). Statically Admissible Stress Recovery using the Moving Least Squares Technique. Progress in Computational Structures Technology, 111-138. doi:10.4203/csets.11.5
Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903
Zhang, Z. (2001). Advances in Computational Mathematics, 15(1/4), 363-374. doi:10.1023/a:1014221409940
González-Estrada, O. A., Nadal, E., Ródenas, J. J., Kerfriden, P., Bordas, S. P. A., & Fuenmayor, F. J. (2013). Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Computational Mechanics, 53(5), 957-976. doi:10.1007/s00466-013-0942-8
Nadal, E., Díez, P., Ródenas, J. J., Tur, M., & Fuenmayor, F. J. (2015). A recovery-explicit error estimator in energy norm for linear elasticity. Computer Methods in Applied Mechanics and Engineering, 287, 172-190. doi:10.1016/j.cma.2015.01.013
ZienkiewiczOC TaylorRL. The finite element method fifth edition volume 1: the basis.MA:Butterworth‐Heinemann;2000.
Brenner, S. C., & Scott, L. R. (1994). The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. doi:10.1007/978-1-4757-4338-8
[-]