- -

On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers

Mostrar el registro completo del ítem

Navarro-Jiménez, J.; Nadal, E.; Tur Valiente, M.; Martínez Casas, J.; Ródenas, JJ. (2020). On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers. International Journal for Numerical Methods in Engineering. 121(13):3004-3020. https://doi.org/10.1002/nme.6344

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164821

Ficheros en el ítem

Metadatos del ítem

Título: On the use of stabilization techniques in the Cartesian grid finite element method framework for iterative solvers
Autor: Navarro-Jiménez, José-Manuel Nadal, Enrique Tur Valiente, Manuel Martínez Casas, José Ródenas, Juan José
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials
Fecha difusión:
Resumen:
[EN] Fictitious domain methods, like the Cartesian grid finite element method (cgFEM), are based on the use of unfitted meshes that must be intersected. This may yield to ill-conditioned systems of equations since the ...[+]
Palabras clave: CgFE , Condition number , Fictitious domain , Iterative solver
Derechos de uso: Reserva de todos los derechos
Fuente:
International Journal for Numerical Methods in Engineering. (issn: 0029-5981 )
DOI: 10.1002/nme.6344
Editorial:
John Wiley & Sons
Versión del editor: https://doi.org/10.1002/nme.6344
Código del Proyecto:
info:eu-repo/grantAgreement/GVA//PROMETEO%2F2016%2F007/ES/Modelado numérico avanzado en ingeniería mecánica/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-89816-R/ES/MODELADO PERSONALIZADO DE LA RESPUESTA DEL TEJIDO OSEO DE PACIENTES A PARTIR DE IMAGENES 3D MEDIANTE MALLADOS CARTESIANOS DE ELEMENTOS FINITOS/
Descripción: "This is the peer reviewed version of the following article: Navarro-Jiménez, José Manuel, Enrique Nadal, Manuel Tur, José Martínez-Casas, and Juan José Ródenas. 2020. "On the Use of Stabilization Techniques in the Cartesian Grid Finite Element Method Framework for Iterative Solvers." International Journal for Numerical Methods in Engineering 121 (13). Wiley: 3004-20. doi:10.1002/nme.6344, which has been published in final form at https://doi.org/10.1002/nme.6344. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving."
Agradecimientos:
The authors wish to thank the Spanish "Ministerio de Economía y Competitividad," the "Generalitat Valenciana," and the "Universitat Politècnica de València" for their financial support received through the projects ...[+]
Tipo: Artículo

References

Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011

Ruiz-Gironés, E., & Sarrate, J. (2010). Generation of structured hexahedral meshes in volumes with holes. Finite Elements in Analysis and Design, 46(10), 792-804. doi:10.1016/j.finel.2010.04.005

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579 [+]
Burman, E., & Hansbo, P. (2010). Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method. Computer Methods in Applied Mechanics and Engineering, 199(41-44), 2680-2686. doi:10.1016/j.cma.2010.05.011

Ruiz-Gironés, E., & Sarrate, J. (2010). Generation of structured hexahedral meshes in volumes with holes. Finite Elements in Analysis and Design, 46(10), 792-804. doi:10.1016/j.finel.2010.04.005

Geuzaine, C., & Remacle, J.-F. (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11), 1309-1331. doi:10.1002/nme.2579

Parvizian, J., Düster, A., & Rank, E. (2007). Finite cell method. Computational Mechanics, 41(1), 121-133. doi:10.1007/s00466-007-0173-y

Düster, A., Parvizian, J., Yang, Z., & Rank, E. (2008). The finite cell method for three-dimensional problems of solid mechanics. Computer Methods in Applied Mechanics and Engineering, 197(45-48), 3768-3782. doi:10.1016/j.cma.2008.02.036

Nadal, E., Ródenas, J. J., Albelda, J., Tur, M., Tarancón, J. E., & Fuenmayor, F. J. (2013). Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization. Abstract and Applied Analysis, 2013, 1-19. doi:10.1155/2013/953786

Nadal, E., Ródenas, J. J., Sánchez-Orgaz, E. M., López-Real, S., & Martí-Pellicer, J. (2014). Sobre la utilización de códigos de elementos finitos basados en mallados cartesianos en optimización estructural. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 30(3), 155-165. doi:10.1016/j.rimni.2013.04.009

Giovannelli, L., Ródenas, J. J., Navarro-Jiménez, J. M., & Tur, M. (2017). Direct medical image-based Finite Element modelling for patient-specific simulation of future implants. Finite Elements in Analysis and Design, 136, 37-57. doi:10.1016/j.finel.2017.07.010

Schillinger, D., & Ruess, M. (2014). The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models. Archives of Computational Methods in Engineering, 22(3), 391-455. doi:10.1007/s11831-014-9115-y

Burman, E., Claus, S., Hansbo, P., Larson, M. G., & Massing, A. (2014). CutFEM: Discretizing geometry and partial differential equations. International Journal for Numerical Methods in Engineering, 104(7), 472-501. doi:10.1002/nme.4823

Tur, M., Albelda, J., Marco, O., & Ródenas, J. J. (2015). Stabilized method of imposing Dirichlet boundary conditions using a recovered stress field. Computer Methods in Applied Mechanics and Engineering, 296, 352-375. doi:10.1016/j.cma.2015.08.001

Tur, M., Albelda, J., Nadal, E., & Ródenas, J. J. (2014). Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers. International Journal for Numerical Methods in Engineering, 98(6), 399-417. doi:10.1002/nme.4629

De Prenter, F., Verhoosel, C. V., van Zwieten, G. J., & van Brummelen, E. H. (2017). Condition number analysis and preconditioning of the finite cell method. Computer Methods in Applied Mechanics and Engineering, 316, 297-327. doi:10.1016/j.cma.2016.07.006

Berger-Vergiat, L., Waisman, H., Hiriyur, B., Tuminaro, R., & Keyes, D. (2011). Inexact Schwarz-algebraic multigrid preconditioners for crack problems modeled by extended finite element methods. International Journal for Numerical Methods in Engineering, 90(3), 311-328. doi:10.1002/nme.3318

Menk, A., & Bordas, S. P. A. (2010). A robust preconditioning technique for the extended finite element method. International Journal for Numerical Methods in Engineering, 85(13), 1609-1632. doi:10.1002/nme.3032

Dauge, M., Düster, A., & Rank, E. (2015). Theoretical and Numerical Investigation of the Finite Cell Method. Journal of Scientific Computing, 65(3), 1039-1064. doi:10.1007/s10915-015-9997-3

Elfverson, D., Larson, M. G., & Larsson, K. (2018). CutIGA with basis function removal. Advanced Modeling and Simulation in Engineering Sciences, 5(1). doi:10.1186/s40323-018-0099-2

Verhoosel, C. V., van Zwieten, G. J., van Rietbergen, B., & de Borst, R. (2015). Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone. Computer Methods in Applied Mechanics and Engineering, 284, 138-164. doi:10.1016/j.cma.2014.07.009

Burman, E. (2010). Ghost penalty. Comptes Rendus Mathematique, 348(21-22), 1217-1220. doi:10.1016/j.crma.2010.10.006

BadiaS VerdugoF MartínAF. The aggregated unfitted finite element method for elliptic problems;2017.

Jomo, J. N., de Prenter, F., Elhaddad, M., D’Angella, D., Verhoosel, C. V., Kollmannsberger, S., … Rank, E. (2019). Robust and parallel scalable iterative solutions for large-scale finite cell analyses. Finite Elements in Analysis and Design, 163, 14-30. doi:10.1016/j.finel.2019.01.009

Béchet, É., Moës, N., & Wohlmuth, B. (2008). A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method. International Journal for Numerical Methods in Engineering, 78(8), 931-954. doi:10.1002/nme.2515

Hautefeuille, M., Annavarapu, C., & Dolbow, J. E. (2011). Robust imposition of Dirichlet boundary conditions on embedded surfaces. International Journal for Numerical Methods in Engineering, 90(1), 40-64. doi:10.1002/nme.3306

Hansbo, P., Lovadina, C., Perugia, I., & Sangalli, G. (2005). A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes. Numerische Mathematik, 100(1), 91-115. doi:10.1007/s00211-005-0587-4

Burman, E., & Hansbo, P. (2012). Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method. Applied Numerical Mathematics, 62(4), 328-341. doi:10.1016/j.apnum.2011.01.008

Gerstenberger, A., & Wall, W. A. (2008). An eXtended Finite Element Method/Lagrange multiplier based approach for fluid–structure interaction. Computer Methods in Applied Mechanics and Engineering, 197(19-20), 1699-1714. doi:10.1016/j.cma.2007.07.002

AxelssonO. Iterative solution methods;1994.

Stenberg, R. (1995). On some techniques for approximating boundary conditions in the finite element method. Journal of Computational and Applied Mathematics, 63(1-3), 139-148. doi:10.1016/0377-0427(95)00057-7

Zienkiewicz, O. C., & Zhu, J. Z. (1987). A simple error estimator and adaptive procedure for practical engineerng analysis. International Journal for Numerical Methods in Engineering, 24(2), 337-357. doi:10.1002/nme.1620240206

Zienkiewicz, O. C., & Zhu, J. Z. (1992). The superconvergent patch recovery anda posteriori error estimates. Part 1: The recovery technique. International Journal for Numerical Methods in Engineering, 33(7), 1331-1364. doi:10.1002/nme.1620330702

Blacker, T., & Belytschko, T. (1994). Superconvergent patch recovery with equilibrium and conjoint interpolant enhancements. International Journal for Numerical Methods in Engineering, 37(3), 517-536. doi:10.1002/nme.1620370309

Díez, P., José Ródenas, J., & Zienkiewicz, O. C. (2007). Equilibrated patch recovery error estimates: simple and accurate upper bounds of the error. International Journal for Numerical Methods in Engineering, 69(10), 2075-2098. doi:10.1002/nme.1837

Xiao, Q. Z., & Karihaloo, B. L. (s. f.). Statically Admissible Stress Recovery using the Moving Least Squares Technique. Progress in Computational Structures Technology, 111-138. doi:10.4203/csets.11.5

Ródenas, J. J., Tur, M., Fuenmayor, F. J., & Vercher, A. (2007). Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. International Journal for Numerical Methods in Engineering, 70(6), 705-727. doi:10.1002/nme.1903

Zhang, Z. (2001). Advances in Computational Mathematics, 15(1/4), 363-374. doi:10.1023/a:1014221409940

González-Estrada, O. A., Nadal, E., Ródenas, J. J., Kerfriden, P., Bordas, S. P. A., & Fuenmayor, F. J. (2013). Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Computational Mechanics, 53(5), 957-976. doi:10.1007/s00466-013-0942-8

Nadal, E., Díez, P., Ródenas, J. J., Tur, M., & Fuenmayor, F. J. (2015). A recovery-explicit error estimator in energy norm for linear elasticity. Computer Methods in Applied Mechanics and Engineering, 287, 172-190. doi:10.1016/j.cma.2015.01.013

ZienkiewiczOC TaylorRL. The finite element method fifth edition volume 1: the basis.MA:Butterworth‐Heinemann;2000.

Brenner, S. C., & Scott, L. R. (1994). The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics. doi:10.1007/978-1-4757-4338-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem