- -

Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts

Show full item record

Amsler, J.; Sarma, BB.; Agostini, G.; Prieto González, G.; Plessow, P.; Studt, F. (2020). Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts. Journal of the American Chemical Society. 142(11):5087-5096. https://doi.org/10.1021/jacs.9b12171

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/164822

Files in this item

Item Metadata

Title: Prospects of Heterogeneous Hydroformylation with Supported Single Atom Catalysts
Author: Amsler, Jonas Sarma, Bidyut B. Agostini, G. Prieto González, Gonzalo Plessow, P. Studt, F.
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Issued date:
Abstract:
[EN] The potential of oxide-supported rhodium single atom catalysts (SACs) for heterogeneous hydroformylation was investigated both theoretically and experimentally. Using high-level domain-based local-pair natural orbital ...[+]
Subjects: Density-Functional theory , Rhodium complexes , Co adsorption , Basis-Sets , Surfaces , Oxidation , Clusters , Oxide , Triphenylphosphine , Regioselectivity
Copyrigths: Reserva de todos los derechos
Source:
Journal of the American Chemical Society. (issn: 0002-7863 )
DOI: 10.1021/jacs.9b12171
Publisher:
American Chemical Society
Publisher version: https://doi.org/10.1021/jacs.9b12171
Project ID:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-096399-A-I00/ES/CLUSTERES MULTIMETALICOS Y SUBNANOMETRICOS SOPORTADOS: SINTESIS, ESTRUCTURA Y DINAMISMO ATOMICO, Y EMPLEO COMO CATALIZADORES EN LA VALORIZACION DE METANO Y ALCANOS LIGEROS/
info:eu-repo/grantAgreement/Baden-Württemberg Landesregierung//RV bw17D01/
info:eu-repo/grantAgreement/DFG//GRK 2450/
Thanks:
X-ray absorption experiments were performed at the ALBA Synchrotron Light Source (Spain), experiment 2019023278. Beamline scientists L. Simonelli and C. Marini are gratefully acknowledged for their contribution to beam ...[+]
Type: Artículo

References

Franke, R., Selent, D., & Börner, A. (2012). Applied Hydroformylation. Chemical Reviews, 112(11), 5675-5732. doi:10.1021/cr3001803

Serna, P., Yardimci, D., Kistler, J. D., & Gates, B. C. (2014). Formation of supported rhodium clusters from mononuclear rhodium complexes controlled by the support and ligands on rhodium. Phys. Chem. Chem. Phys., 16(3), 1262-1270. doi:10.1039/c3cp53057d

Guan, E., & Gates, B. C. (2017). Stable Rhodium Pair Sites on MgO: Influence of Ligands and Rhodium Nuclearity on Catalysis of Ethylene Hydrogenation and H–D Exchange in the Reaction of H2 with D2. ACS Catalysis, 8(1), 482-487. doi:10.1021/acscatal.7b03549 [+]
Franke, R., Selent, D., & Börner, A. (2012). Applied Hydroformylation. Chemical Reviews, 112(11), 5675-5732. doi:10.1021/cr3001803

Serna, P., Yardimci, D., Kistler, J. D., & Gates, B. C. (2014). Formation of supported rhodium clusters from mononuclear rhodium complexes controlled by the support and ligands on rhodium. Phys. Chem. Chem. Phys., 16(3), 1262-1270. doi:10.1039/c3cp53057d

Guan, E., & Gates, B. C. (2017). Stable Rhodium Pair Sites on MgO: Influence of Ligands and Rhodium Nuclearity on Catalysis of Ethylene Hydrogenation and H–D Exchange in the Reaction of H2 with D2. ACS Catalysis, 8(1), 482-487. doi:10.1021/acscatal.7b03549

Dossi, C., Fusi, A., Garlaschelli, L., Roberto, D., Ugo, R., & Psaro, R. (1991). Ethylene hydroformylation with the silica-supported K2[Rh12(CO)30] cluster: evidence for vapor-phase cluster catalysis. Catalysis Letters, 11(3-6), 335-339. doi:10.1007/bf00764325

Ehresmann, J. O., Kletnieks, P. W., Liang, A., Bhirud, V. A., Bagatchenko, O. P., Lee, E. J., … Haw, J. F. (2006). Evidence from NMR and EXAFS Studies of a Dynamically Uniform Mononuclear Single-Site Zeolite-Supported Rhodium Catalyst. Angewandte Chemie International Edition, 45(4), 574-576. doi:10.1002/anie.200502864

Sun, Q., Dai, Z., Liu, X., Sheng, N., Deng, F., Meng, X., & Xiao, F.-S. (2015). Highly Efficient Heterogeneous Hydroformylation over Rh-Metalated Porous Organic Polymers: Synergistic Effect of High Ligand Concentration and Flexible Framework. Journal of the American Chemical Society, 137(15), 5204-5209. doi:10.1021/jacs.5b02122

De Munck, N. A., Verbruggen, M. W., & Scholten, J. J. F. (1981). Gas phase hydroformylation of propylene with porous resin anchored rhodium complexes part I. Methods of catalyst preparation and characterization. Journal of Molecular Catalysis, 10(3), 313-330. doi:10.1016/0304-5102(81)85052-3

Lang, R., Li, T., Matsumura, D., Miao, S., Ren, Y., Cui, Y.-T., … Zhang, T. (2016). Hydroformylation of Olefins by a Rhodium Single-Atom Catalyst with Activity Comparable to RhCl(PPh3)3. Angewandte Chemie International Edition, 55(52), 16054-16058. doi:10.1002/anie.201607885

Yang, X.-F., Wang, A., Qiao, B., Li, J., Liu, J., & Zhang, T. (2013). Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Accounts of Chemical Research, 46(8), 1740-1748. doi:10.1021/ar300361m

Paolucci, C., Khurana, I., Parekh, A. A., Li, S., Shih, A. J., Li, H., … Gounder, R. (2017). Dynamic multinuclear sites formed by mobilized copper ions in NO x selective catalytic reduction. Science, 357(6354), 898-903. doi:10.1126/science.aan5630

Jangjou, Y., Do, Q., Gu, Y., Lim, L.-G., Sun, H., Wang, D., … Epling, W. S. (2018). Nature of Cu Active Centers in Cu-SSZ-13 and Their Responses to SO2 Exposure. ACS Catalysis, 8(2), 1325-1337. doi:10.1021/acscatal.7b03095

Wang, L., Zhang, W., Wang, S., Gao, Z., Luo, Z., Wang, X., … Zeng, J. (2016). Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nature Communications, 7(1). doi:10.1038/ncomms14036

Li, T., Chen, F., Lang, R., Wang, H., Su, Y., Qiao, B., … Zhang, T. (2020). Styrene Hydroformylation with In Situ Hydrogen: Regioselectivity Control by Coupling with the Low‐Temperature Water–Gas Shift Reaction. Angewandte Chemie International Edition, 59(19), 7430-7434. doi:10.1002/anie.202000998

Heck, R. F., & Breslow, D. S. (1961). The Reaction of Cobalt Hydrotetracarbonyl with Olefins. Journal of the American Chemical Society, 83(19), 4023-4027. doi:10.1021/ja01480a017

Van Leeuwen, P. W. N. M., & Claver, C. (Eds.). (2002). Rhodium Catalyzed Hydroformylation. Catalysis by Metal Complexes. doi:10.1007/0-306-46947-2

Van Rooy, A. (1996). Rhodium-catalysed hydroformylation of branched 1-alkenes; bulky phosphite vs. triphenylphosphine as modifying ligand. Journal of Organometallic Chemistry, 507(1-2), 69-73. doi:10.1016/0022-328x(95)05748-e

Sparta, M., Børve, K. J., & Jensen, V. R. (2007). Activity of Rhodium-Catalyzed Hydroformylation:  Added Insight and Predictions from Theory. Journal of the American Chemical Society, 129(27), 8487-8499. doi:10.1021/ja070395n

Gellrich, U., Himmel, D., Meuwly, M., & Breit, B. (2013). Realistic Energy Surfaces for Real-World Systems: An IMOMO CCSD(T):DFT Scheme for Rhodium-Catalyzed Hydroformylation with the 6-DPPon Ligand. Chemistry - A European Journal, 19(48), 16272-16281. doi:10.1002/chem.201302132

Kumar, M., Chaudhari, R. V., Subramaniam, B., & Jackson, T. A. (2014). Ligand Effects on the Regioselectivity of Rhodium-Catalyzed Hydroformylation: Density Functional Calculations Illuminate the Role of Long-Range Noncovalent Interactions. Organometallics, 33(16), 4183-4191. doi:10.1021/om500196g

Jiao, Y., Torne, M. S., Gracia, J., Niemantsverdriet, J. W. (Hans), & van Leeuwen, P. W. N. M. (2017). Ligand effects in rhodium-catalyzed hydroformylation with bisphosphines: steric or electronic? Catalysis Science & Technology, 7(6), 1404-1414. doi:10.1039/c6cy01990k

Schmidt, S., Deglmann, P., & Hofmann, P. (2014). Density Functional Investigations of the Rh-Catalyzed Hydroformylation of 1,3-Butadiene with Bisphosphite Ligands. ACS Catalysis, 4(10), 3593-3604. doi:10.1021/cs500718v

Jacobs, I., de Bruin, B., & Reek, J. N. H. (2015). Comparison of the Full Catalytic Cycle of Hydroformylation Mediated by Mono- and Bis-Ligated Triphenylphosphine-Rhodium Complexes by Using DFT Calculations. ChemCatChem, 7(11), 1708-1718. doi:10.1002/cctc.201500087

Kégl, T. (2015). Computational aspects of hydroformylation. RSC Advances, 5(6), 4304-4327. doi:10.1039/c4ra13121e

Wodrich, M. D., Busch, M., & Corminboeuf, C. (2016). Accessing and predicting the kinetic profiles of homogeneous catalysts from volcano plots. Chemical Science, 7(9), 5723-5735. doi:10.1039/c6sc01660j

Liu, J., Bunes, B. R., Zang, L., & Wang, C. (2017). Supported single-atom catalysts: synthesis, characterization, properties, and applications. Environmental Chemistry Letters, 16(2), 477-505. doi:10.1007/s10311-017-0679-2

Kwon, Y., Kim, T. Y., Kwon, G., Yi, J., & Lee, H. (2017). Selective Activation of Methane on Single-Atom Catalyst of Rhodium Dispersed on Zirconia for Direct Conversion. Journal of the American Chemical Society, 139(48), 17694-17699. doi:10.1021/jacs.7b11010

Sarma, B. B., Kim, J., Amsler, J., Agostini, G., Weidenthaler, C., Pfänder, N., … Prieto, G. (2020). One‐Pot Cooperation of Single‐Atom Rh and Ru Solid Catalysts for a Selective Tandem Olefin Isomerization‐Hydrosilylation Process. Angewandte Chemie International Edition, 59(14), 5806-5815. doi:10.1002/anie.201915255

Qiao, B., Wang, A., Yang, X., Allard, L. F., Jiang, Z., Cui, Y., … Zhang, T. (2011). Single-atom catalysis of CO oxidation using Pt1/FeOx. Nature Chemistry, 3(8), 634-641. doi:10.1038/nchem.1095

Sun, S., Zhang, G., Gauquelin, N., Chen, N., Zhou, J., Yang, S., … Sun, X. (2013). Single-atom Catalysis Using Pt/Graphene Achieved through Atomic Layer Deposition. Scientific Reports, 3(1). doi:10.1038/srep01775

Abbet, S., Sanchez, A., Heiz, U., Schneider, W.-D., Ferrari, A. M., Pacchioni, G., & Rösch, N. (2000). Acetylene Cyclotrimerization on Supported Size-Selected Pdn Clusters (1 ≤ n ≤ 30): One Atom Is Enough! Journal of the American Chemical Society, 122(14), 3453-3457. doi:10.1021/ja9922476

Lin, J., Wang, A., Qiao, B., Liu, X., Yang, X., Wang, X., … Zhang, T. (2013). Remarkable Performance of Ir1/FeOx Single-Atom Catalyst in Water Gas Shift Reaction. Journal of the American Chemical Society, 135(41), 15314-15317. doi:10.1021/ja408574m

Gu, X.-K., Qiao, B., Huang, C.-Q., Ding, W.-C., Sun, K., Zhan, E., … Li, W.-X. (2014). Supported Single Pt1/Au1 Atoms for Methanol Steam Reforming. ACS Catalysis, 4(11), 3886-3890. doi:10.1021/cs500740u

Jones, J., Xiong, H., DeLaRiva, A. T., Peterson, E. J., Pham, H., Challa, S. R., … Datye, A. K. (2016). Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science, 353(6295), 150-154. doi:10.1126/science.aaf8800

Fei, H., Dong, J., Arellano-Jiménez, M. J., Ye, G., Dong Kim, N., Samuel, E. L. G., … Tour, J. M. (2015). Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nature Communications, 6(1). doi:10.1038/ncomms9668

Wei, H., Liu, X., Wang, A., Zhang, L., Qiao, B., Yang, X., … Zhang, T. (2014). FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nature Communications, 5(1). doi:10.1038/ncomms6634

Wang, X., van Bokhoven, J. A., & Palagin, D. (2020). Atomically dispersed platinum on low index and stepped ceria surfaces: phase diagrams and stability analysis. Physical Chemistry Chemical Physics, 22(1), 28-38. doi:10.1039/c9cp04973h

Neitzel, A., Figueroba, A., Lykhach, Y., Skála, T., Vorokhta, M., Tsud, N., … Libuda, J. (2016). Atomically Dispersed Pd, Ni, and Pt Species in Ceria-Based Catalysts: Principal Differences in Stability and Reactivity. The Journal of Physical Chemistry C, 120(18), 9852-9862. doi:10.1021/acs.jpcc.6b02264

Tang, Y., Asokan, C., Xu, M., Graham, G. W., Pan, X., Christopher, P., … Sautet, P. (2019). Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nature Communications, 10(1). doi:10.1038/s41467-019-12461-6

DeRita, L., Resasco, J., Dai, S., Boubnov, A., Thang, H. V., Hoffman, A. S., … Christopher, P. (2019). Structural evolution of atomically dispersed Pt catalysts dictates reactivity. Nature Materials, 18(7), 746-751. doi:10.1038/s41563-019-0349-9

Su, Y.-Q., Wang, Y., Liu, J.-X., Filot, I. A. W., Alexopoulos, K., Zhang, L., … Hensen, E. J. M. (2019). Theoretical Approach To Predict the Stability of Supported Single-Atom Catalysts. ACS Catalysis, 9(4), 3289-3297. doi:10.1021/acscatal.9b00252

O’Connor, N. J., Jonayat, A. S. M., Janik, M. J., & Senftle, T. P. (2018). Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning. Nature Catalysis, 1(7), 531-539. doi:10.1038/s41929-018-0094-5

Perdew, J. P., Burke, K., & Ernzerhof, M. (1996). Generalized Gradient Approximation Made Simple. Physical Review Letters, 77(18), 3865-3868. doi:10.1103/physrevlett.77.3865

Grimme, S., Antony, J., Ehrlich, S., & Krieg, H. (2010). A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 132(15), 154104. doi:10.1063/1.3382344

Kresse, G., & Joubert, D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 59(3), 1758-1775. doi:10.1103/physrevb.59.1758

Kresse, G., & Furthmüller, J. (1996). Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set. Physical Review B, 54(16), 11169-11186. doi:10.1103/physrevb.54.11169

Blöchl, P. E. (1994). Projector augmented-wave method. Physical Review B, 50(24), 17953-17979. doi:10.1103/physrevb.50.17953

Anisimov, V. I., Zaanen, J., & Andersen, O. K. (1991). Band theory and Mott insulators: HubbardUinstead of StonerI. Physical Review B, 44(3), 943-954. doi:10.1103/physrevb.44.943

Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J., & Sutton, A. P. (1998). Electron-energy-loss spectra and the structural stability of nickel oxide:  An LSDA+U study. Physical Review B, 57(3), 1505-1509. doi:10.1103/physrevb.57.1505

Song, Y.-L., Yin, L.-L., Zhang, J., Hu, P., Gong, X.-Q., & Lu, G. (2013). A DFT+U study of CO oxidation at CeO2(110) and (111) surfaces with oxygen vacancies. Surface Science, 618, 140-147. doi:10.1016/j.susc.2013.09.001

Nolan, M., Grigoleit, S., Sayle, D. C., Parker, S. C., & Watson, G. W. (2005). Density functional theory studies of the structure and electronic structure of pure and defective low index surfaces of ceria. Surface Science, 576(1-3), 217-229. doi:10.1016/j.susc.2004.12.016

Huang, M., & Fabris, S. (2008). CO Adsorption and Oxidation on Ceria Surfaces from DFT+U Calculations. The Journal of Physical Chemistry C, 112(23), 8643-8648. doi:10.1021/jp709898r

Monkhorst, H. J., & Pack, J. D. (1976). Special points for Brillouin-zone integrations. Physical Review B, 13(12), 5188-5192. doi:10.1103/physrevb.13.5188

Plessow, P. N. (2018). Efficient Transition State Optimization of Periodic Structures through Automated Relaxed Potential Energy Surface Scans. Journal of Chemical Theory and Computation, 14(2), 981-990. doi:10.1021/acs.jctc.7b01070

Zhao, Y., & Truhlar, D. G. (2007). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemistry Accounts, 120(1-3), 215-241. doi:10.1007/s00214-007-0310-x

Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. The Journal of Physical Chemistry, 98(45), 11623-11627. doi:10.1021/j100096a001

TURBOMOLE, V.7.1 2016, a development of Karlsruhe Institute of Technology, Karlsruhe, 1989–2019, TURBOMOLE GmbH, since 2007; available from http://www.turbomole.com. Turbomole GmbH: 2016.

Weigend, F. (2006). Accurate Coulomb-fitting basis sets for H to Rn. Physical Chemistry Chemical Physics, 8(9), 1057. doi:10.1039/b515623h

Weigend, F., & Ahlrichs, R. (2005). Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Physical Chemistry Chemical Physics, 7(18), 3297. doi:10.1039/b508541a

Neese, F. (2011). The ORCA program system. WIREs Computational Molecular Science, 2(1), 73-78. doi:10.1002/wcms.81

Neese, F. (2017). Software update: the ORCA program system, version 4.0. WIREs Computational Molecular Science, 8(1). doi:10.1002/wcms.1327

Ekström, U., Visscher, L., Bast, R., Thorvaldsen, A. J., & Ruud, K. (2010). Arbitrary-Order Density Functional Response Theory from Automatic Differentiation. Journal of Chemical Theory and Computation, 6(7), 1971-1980. doi:10.1021/ct100117s

Andrae, D., H�u�ermann, U., Dolg, M., Stoll, H., & Preu�, H. (1990). Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theoretica Chimica Acta, 77(2), 123-141. doi:10.1007/bf01114537

Marenich, A. V., Cramer, C. J., & Truhlar, D. G. (2009). Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. The Journal of Physical Chemistry B, 113(18), 6378-6396. doi:10.1021/jp810292n

Riplinger, C., Pinski, P., Becker, U., Valeev, E. F., & Neese, F. (2016). Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. II. Linear scaling domain based pair natural orbital coupled cluster theory. The Journal of Chemical Physics, 144(2), 024109. doi:10.1063/1.4939030

Ugliengo, P., & Damin, A. (2002). Are dispersive forces relevant for CO adsorption on the MgO(001) surface? Chemical Physics Letters, 366(5-6), 683-690. doi:10.1016/s0009-2614(02)01657-3

Alessio, M., Usvyat, D., & Sauer, J. (2018). Chemically Accurate Adsorption Energies: CO and H2O on the MgO(001) Surface. Journal of Chemical Theory and Computation, 15(2), 1329-1344. doi:10.1021/acs.jctc.8b01122

Utamapanya, S., Klabunde, K. J., & Schlup, J. R. (1991). Nanoscale metal oxide particles/clusters as chemical reagents. Synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide. Chemistry of Materials, 3(1), 175-181. doi:10.1021/cm00013a036

Ravel, B., & Newville, M. (2005). ATHENA,ARTEMIS,HEPHAESTUS: data analysis for X-ray absorption spectroscopy usingIFEFFIT. Journal of Synchrotron Radiation, 12(4), 537-541. doi:10.1107/s0909049505012719

Connett, J. E. (1972). Chemical equilibria 5. Measurement of equilibrium constants for the dehydrogenation of propanol by a vapour flow technique. The Journal of Chemical Thermodynamics, 4(2), 233-237. doi:10.1016/0021-9614(72)90061-4

Wodrich, M. D., Busch, M., & Corminboeuf, C. (2018). Expedited Screening of Active and Regioselective Catalysts for the Hydroformylation Reaction. Helvetica Chimica Acta, 101(9), e1800107. doi:10.1002/hlca.201800107

Goula, G., Botzolaki, G., Osatiashtiani, A., Parlett, C. M. A., Kyriakou, G., Lambert, R. M., & Yentekakis, I. V. (2019). Oxidative Thermal Sintering and Redispersion of Rh Nanoparticles on Supports with High Oxygen Ion Lability. Catalysts, 9(6), 541. doi:10.3390/catal9060541

Lazzaroni, R., Raffaelli, A., Settambolo, R., Bertozzi, S., & Vitulli, G. (1989). Regioselectivity in the rhodium-catalyzed hydroformylation of styrene as a function of reaction temperature and gas pressure. Journal of Molecular Catalysis, 50(1), 1-9. doi:10.1016/0304-5102(89)80104-x

Yu, S., Chie, Y., Guan, Z., Zou, Y., Li, W., & Zhang, X. (2008). Highly Regioselective Hydroformylation of Styrene and Its Derivatives Catalyzed by Rh Complex with Tetraphosphorus Ligands. Organic Letters, 11(1), 241-244. doi:10.1021/ol802479y

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record