- -

Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez, Juan J. es_ES
dc.contributor.author González Suárez, Ana es_ES
dc.contributor.author Nadal, Enrique es_ES
dc.contributor.author Berjano, Enrique es_ES
dc.date.accessioned 2021-04-01T03:31:48Z
dc.date.available 2021-04-01T03:31:48Z
dc.date.issued 2020-10 es_ES
dc.identifier.issn 0169-2607 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164823
dc.description.abstract [EN] Background and objectives: A constant voltage (DC voltage) is usually used in radiofrequency ablation (RFA) computer models to mimic the radiofrequency voltage. However, in some cases a low frequency sine wave voltage (AC voltage) may be used instead. Our objective was to assess the thermal impact of replacing DC voltage by low-frequency AC voltage in RFA computer modeling. Methods: A 2D model was used consisting of an ablation electrode placed perpendicular to the tissue fragment. The Finite Element method was used to solve a coupled electric-thermal problem. Quasi-static electrical approximation was implemented in two ways (both with equivalent electrical power): (1) by a constant voltage of 25 V in the ablation electrode (DC voltage), and (2) applying a sine waveform with peak amplitude of 25 root 2 V (AC voltage). The frequency of the sine signal (f(AC)) varied from 0.5 Hz to 50 Hz. Results: Sine wave thermal oscillations (at twice the f(AC) frequency) were observed in the case of AC voltage, in addition to the temperature obtained by DC voltage. The amplitude of the oscillations: (1) increased with temperature, remaining more or less constant after 30 s; (2) was of up to +/- 3 degrees C for very low f(AC) values (0.5 Hz); and (3) was reduced at higher f(AC) values and with distance from the electrode (almost negligible for distances > 5 mm). The evolution of maximum lesion depth and width were almost identical with both DC and AC. Conclusions: Although reducing f(AC) reduces the computation time, thermal oscillations appear at points near the electrode, which suggests that a minimum value of f(AC) should be used. Replacing DC voltage by low-frequency AC voltage does not appear to have an impact on the lesion depth. (C) 2020 Elsevier B.V. All rights reserved. es_ES
dc.description.sponsorship This work was supported by the Spanish Ministerio de Ciencia, Innovacion y Universidades under "Programa Estatal de I+D+i Orientada a los Retos de la Sociedad", Grant no. "RTI2018-094357-B-C21". es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Computer Methods and Programs in Biomedicine es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Computer modeling es_ES
dc.subject Quasi-static approximation es_ES
dc.subject Radiofrequency ablation es_ES
dc.subject.classification TECNOLOGIA ELECTRONICA es_ES
dc.subject.classification INGENIERIA MECANICA es_ES
dc.title Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cmpb.2020.105673 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-094357-B-C21/ES/MODELADO Y EXPERIMENTACION PARA TERAPIAS ABLATIVAS INNOVADORAS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Mecánica y de Materiales - Departament d'Enginyeria Mecànica i de Materials es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ingeniería Electrónica - Departament d'Enginyeria Electrònica es_ES
dc.description.bibliographicCitation Pérez, JJ.; González Suárez, A.; Nadal, E.; Berjano, E. (2020). Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling. Computer Methods and Programs in Biomedicine. 195:1-7. https://doi.org/10.1016/j.cmpb.2020.105673 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cmpb.2020.105673 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 7 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 195 es_ES
dc.identifier.pmid 32750633 es_ES
dc.relation.pasarela S\416257 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Doss, J. D. (1982). Calculation of electric fields in conductive media. Medical Physics, 9(4), 566-573. doi:10.1118/1.595107 es_ES
dc.description.references Tungjitkusolmun, S., Haemmerich, D., Hong Cao, Jang-Zern Tsai, Young Bin Choy, Vorperian, V. R., & Webster, J. G. (2002). Modeling bipolar phase-shifted multielectrode catheter ablation. IEEE Transactions on Biomedical Engineering, 49(1), 10-17. doi:10.1109/10.972835 es_ES
dc.description.references Yan, S., Wu, X., & Wang, W. (2016). A simulation study to compare the phase-shift angle radiofrequency ablation mode with bipolar and unipolar modes in creating linear lesions for atrial fibrillation ablation. International Journal of Hyperthermia, 32(3), 231-238. doi:10.3109/02656736.2016.1145746 es_ES
dc.description.references Pérez, J. J., González-Suárez, A., & Berjano, E. (2017). Numerical analysis of thermal impact of intramyocardial capillary blood flow during radiofrequency cardiac ablation. International Journal of Hyperthermia, 34(3), 243-249. doi:10.1080/02656736.2017.1336258 es_ES
dc.description.references Keangin, P., Wessapan, T., & Rattanadecho, P. (2011). Analysis of heat transfer in deformed liver cancer modeling treated using a microwave coaxial antenna. Applied Thermal Engineering, 31(16), 3243-3254. doi:10.1016/j.applthermaleng.2011.06.005 es_ES
dc.description.references Nakayama, A., & Kuwahara, F. (2008). A general bioheat transfer model based on the theory of porous media. International Journal of Heat and Mass Transfer, 51(11-12), 3190-3199. doi:10.1016/j.ijheatmasstransfer.2007.05.030 es_ES
dc.description.references Bhowmik, A., Singh, R., Repaka, R., & Mishra, S. C. (2013). Conventional and newly developed bioheat transport models in vascularized tissues: A review. Journal of Thermal Biology, 38(3), 107-125. doi:10.1016/j.jtherbio.2012.12.003 es_ES
dc.description.references Andreozzi, A., Brunese, L., Iasiello, M., Tucci, C., & Vanoli, G. P. (2018). Modeling Heat Transfer in Tumors: A Review of Thermal Therapies. Annals of Biomedical Engineering, 47(3), 676-693. doi:10.1007/s10439-018-02177-x es_ES
dc.description.references Iasiello M., Andreozzi A., Bianco N., Vafai K. The porous media theory applied to radiofrequency catheter ablation. Int. J. Numer. Methods Heat Fluid Flow, Vol. 30 No. 5, pp. 2669–2681. 10.1108/HFF-11-2018-0707. es_ES
dc.description.references González‐Suárez, A., Herranz, D., Berjano, E., Rubio‐Guivernau, J. L., & Margallo‐Balbás, E. (2017). Relation between denaturation time measured by optical coherence reflectometry and thermal lesion depth during radiofrequency cardiac ablation: Feasibility numerical study. Lasers in Surgery and Medicine, 50(3), 222-229. doi:10.1002/lsm.22771 es_ES
dc.description.references Irastorza, R. M., Gonzalez-Suarez, A., Pérez, J. J., & Berjano, E. (2020). Differences in applied electrical power between full thorax models and limited-domain models for RF cardiac ablation. International Journal of Hyperthermia, 37(1), 677-687. doi:10.1080/02656736.2020.1777330 es_ES
dc.description.references Seiler, J., Roberts-Thomson, K. C., Raymond, J.-M., Vest, J., Delacretaz, E., & Stevenson, W. G. (2008). Steam pops during irrigated radiofrequency ablation: Feasibility of impedance monitoring for prevention. Heart Rhythm, 5(10), 1411-1416. doi:10.1016/j.hrthm.2008.07.011 es_ES
dc.description.references González-Suárez, A., Berjano, E., Guerra, J. M., & Gerardo-Giorda, L. (2016). Computational Modeling of Open-Irrigated Electrodes for Radiofrequency Cardiac Ablation Including Blood Motion-Saline Flow Interaction. PLOS ONE, 11(3), e0150356. doi:10.1371/journal.pone.0150356 es_ES
dc.description.references Bourier, F., Duchateau, J., Vlachos, K., Lam, A., Martin, C. A., Takigawa, M., … Jais, P. (2018). High‐power short‐duration versus standard radiofrequency ablation: Insights on lesion metrics. Journal of Cardiovascular Electrophysiology, 29(11), 1570-1575. doi:10.1111/jce.13724 es_ES
dc.description.references Labonte, S. (1994). Numerical model for radio-frequency ablation of the endocardium and its experimental validation. IEEE Transactions on Biomedical Engineering, 41(2), 108-115. doi:10.1109/10.284921 es_ES
dc.description.references Babuska, I., & Oden, J. T. (2004). Verification and validation in computational engineering and science: basic concepts. Computer Methods in Applied Mechanics and Engineering, 193(36-38), 4057-4066. doi:10.1016/j.cma.2004.03.002 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem