- -

Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Fuentes Bargues, José Luis es_ES
dc.contributor.author Vivancos, José-Luis es_ES
dc.contributor.author Ferrer-Gisbert, Pablo-S. es_ES
dc.contributor.author Gimeno-Guillem, Miguel Ángel es_ES
dc.date.accessioned 2021-04-09T03:31:40Z
dc.date.available 2021-04-09T03:31:40Z
dc.date.issued 2020-07 es_ES
dc.identifier.uri http://hdl.handle.net/10251/164967
dc.description.abstract [EN] The design of near zero energy offices is a priority, which involves looking to achieve designs which minimise energy consumption and balance energy requirements with an increase in the installation and consumption of renewable energy. In light of this, some authors have used computer software to achieve simulations of the energy behaviour of buildings. Other studies based on regulatory systems which classify and label energy use also generally make their assessments through the use of software. In Spain, there is an authorised procedure for certifying the energy performance of buildings, and software (LIDER-CALENER unified tool) which is used to demonstrate compliance of the performance of buildings both from the point of view of energy demand and energy consumption. The aim of this study is to analyse the energy behaviour of an office building and the variability of the same using the software in terms of the following variables: climate zone, building orientation and certain surrounding wall types and encasements typical of this type of construction. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Sustainability es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Building energy certification es_ES
dc.subject Energy efficiency measures es_ES
dc.subject Office buildings es_ES
dc.subject Near zero energy buildings es_ES
dc.subject.classification PROYECTOS DE INGENIERIA es_ES
dc.title Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/su12135347 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Proyectos de Ingeniería - Departament de Projectes d'Enginyeria es_ES
dc.description.bibliographicCitation Fuentes Bargues, JL.; Vivancos, J.; Ferrer-Gisbert, P.; Gimeno-Guillem, MÁ. (2020). Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings. Sustainability. 12(13):1-23. https://doi.org/10.3390/su12135347 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/su12135347 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 23 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 12 es_ES
dc.description.issue 13 es_ES
dc.identifier.eissn 2071-1050 es_ES
dc.relation.pasarela S\414875 es_ES
dc.description.references Pérez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information. Energy and Buildings, 40(3), 394-398. doi:10.1016/j.enbuild.2007.03.007 es_ES
dc.description.references https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiD95W5-qrqAhVP62EKHaYLCFAQFjADegQIARAB&url=https%3A%2F%2Fec.europa.eu%2Fenergy%2Fsites%2Fener%2Ffiles%2Fdocuments%2F2012_energy_roadmap_2050_en_0.pdf&usg=AOvVaw3tfjm-IvZt9fXrnZuvpohw es_ES
dc.description.references European Comission Climate Strategies & Targets https://ec.europa.eu/clima/policies/strategies/2030_en es_ES
dc.description.references European Comission Climate Negotations https://ec.europa.eu/clima/policies/international/negotiations/paris_en es_ES
dc.description.references 2018/844 of the European Parliament and of the Council of 30 May 2018 Amending Directive 2010/31/EU on the Energy Performance of Buildings and Directive 2012/27/EU on Energy Efficiency https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L0844&from=EN es_ES
dc.description.references Kurnitski, J., Saari, A., Kalamees, T., Vuolle, M., Niemelä, J., & Tark, T. (2011). Cost optimal and nearly zero (nZEB) energy performance calculations for residential buildings with REHVA definition for nZEB national implementation. Energy and Buildings, 43(11), 3279-3288. doi:10.1016/j.enbuild.2011.08.033 es_ES
dc.description.references Aparicio Ruiz, P., Guadix Martín, J., Salmerón Lissén, J. M., & Sánchez de la Flor, F. J. (2014). An integrated optimisation method for residential building design: A case study in Spain. Energy and Buildings, 80, 158-168. doi:10.1016/j.enbuild.2014.05.020 es_ES
dc.description.references Tourism and Digital Agenda Plan Nacional de Acción de Eficiencia Energética 2017–2020 https://ec.europa.eu/energy/sites/ener/files/documents/es_neeap_2017_es.pdf es_ES
dc.description.references Guía de Ahorro y Eficiencia Energética en Oficinas http://www.officinaseficientes.es/docs/guia_OFF.pdf es_ES
dc.description.references Crawley, D. B., Hand, J. W., Kummert, M., & Griffith, B. T. (2008). Contrasting the capabilities of building energy performance simulation programs. Building and Environment, 43(4), 661-673. doi:10.1016/j.buildenv.2006.10.027 es_ES
dc.description.references Pérez-Andreu, V., Aparicio-Fernández, C., Martínez-Ibernón, A., & Vivancos, J.-L. (2018). Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate. Energy, 165, 63-74. doi:10.1016/j.energy.2018.09.015 es_ES
dc.description.references Herrando, M., Cambra, D., Navarro, M., de la Cruz, L., Millán, G., & Zabalza, I. (2016). Energy Performance Certification of Faculty Buildings in Spain: The gap between estimated and real energy consumption. Energy Conversion and Management, 125, 141-153. doi:10.1016/j.enconman.2016.04.037 es_ES
dc.description.references Sinacka, J., & Ratajczak, K. (2018). Analysis of selected input data impact on energy demand in office building - case study. MATEC Web of Conferences, 222, 01015. doi:10.1051/matecconf/201822201015 es_ES
dc.description.references Mikulik, J. (2018). Energy Demand Patterns in an Office Building: A Case Study in Kraków (Southern Poland). Sustainability, 10(8), 2901. doi:10.3390/su10082901 es_ES
dc.description.references Aparicio Ruiz, P., Sánchez de la Flor, F. J., Molina Felix, J. L., Salmerón Lissén, J., & Guadix Martín, J. (2016). Applying the HVAC systems in an integrated optimization method for residential building’s design. A case study in Spain. Energy and Buildings, 119, 74-84. doi:10.1016/j.enbuild.2016.03.023 es_ES
dc.description.references Royal Decree 235/2013, of 5th April, Agreeing to the Procedure Basic for the Certification of the Energy Efficiency of Buildings https://www.boe.es/buscar/pdf/2013/BOE-A-2013-3904-consolidado.pdf es_ES
dc.description.references Unified Tool LIDER-CALENER (HULC-Tool) https://veredes.es/blog/en/herramienta-unificada-lider-calener-hulc/ es_ES
dc.description.references Rosselló-Batle, B., Ribas, C., Moià-Pol, A., & Martínez-Moll, V. (2015). An assessment of the relationship between embodied and thermal energy demands in dwellings in a Mediterranean climate. Energy and Buildings, 109, 230-244. doi:10.1016/j.enbuild.2015.10.007 es_ES
dc.description.references Sánchez Ramos, J., Guerrero Delgado, Mc., Álvarez Domínguez, S., Molina Félix, J. L., Sánchez de la Flor, F. J., & Tenorio Ríos, J. A. (2019). Systematic Simplified Simulation Methodology for Deep Energy Retrofitting Towards Nze Targets Using Life Cycle Energy Assessment. Energies, 12(16), 3038. doi:10.3390/en12163038 es_ES
dc.description.references Catalogue of Constructive Elements of the TBC 2011 https://itec.cat/cec/ es_ES
dc.description.references Construction Technology of Catalonia (Instituto de Tecnología de la Construcción: ITec) https://en.itec.cat/ es_ES
dc.description.references Ministry of Development Support Document of the DB HE1 for the calculation of Characteristic Parameters of the Building Envelope (DA DB-HE/1) 2015 https://www.codigotecnico.org/images/stories/pdf/ahorroEnergia/DA_DB-HE-1_Calculo_de_parametros_caracteristicos_de_la_envolvente.pdf es_ES
dc.description.references Condiciones de Aceptación de Procedimientos Alternativos a LIDER y CALENER https://www.idae.es/publicaciones/condiciones-de-aceptacion-de-procedimientos-alternativos-lider-y-calener es_ES
dc.description.references Design Builder Software, ANSI/ASHRAE Standard 140-2004 Building Thermal Envelope and Fabric Load Tests 2006 http://www.designbuilder.co.uk/documents/ANSI_ASHRAE.pdf es_ES
dc.description.references Database 2019 https://www.five.es/productos/herramientas-on-line/visualizador-2019/ es_ES
dc.description.references Haase, M., Marques da Silva, F., & Amato, A. (2009). Simulation of ventilated facades in hot and humid climates. Energy and Buildings, 41(4), 361-373. doi:10.1016/j.enbuild.2008.11.008 es_ES
dc.description.references Lau, A. K. K., Salleh, E., Lim, C. H., & Sulaiman, M. Y. (2016). Potential of shading devices and glazing configurations on cooling energy savings for high-rise office buildings in hot-humid climates: The case of Malaysia. International Journal of Sustainable Built Environment, 5(2), 387-399. doi:10.1016/j.ijsbe.2016.04.004 es_ES
dc.description.references Al-ajmi Farraj F., & Hanby, V. I. (2008). Simulation of energy consumption for Kuwaiti domestic buildings. Energy and Buildings, 40(6), 1101-1109. doi:10.1016/j.enbuild.2007.10.010 es_ES
dc.description.references Raheem, A. A., Issa, R. R., & Olbina, S. (2013). Solar transmittance analysis of different types of sunshades in the Florida climate. Building Simulation, 7(1), 3-11. doi:10.1007/s12273-013-0137-4 es_ES
dc.description.references Valladares-Rendón, L. G., & Lo, S.-L. (2014). Passive shading strategies to reduce outdoor insolation and indoor cooling loads by using overhang devices on a building. Building Simulation, 7(6), 671-681. doi:10.1007/s12273-014-0182-7 es_ES
dc.description.references Huang, Y., Niu, J., & Chung, T. (2014). Comprehensive analysis on thermal and daylighting performance of glazing and shading designs on office building envelope in cooling-dominant climates. Applied Energy, 134, 215-228. doi:10.1016/j.apenergy.2014.07.100 es_ES
dc.description.references Ng, P. K., Mithraratne, N., & Kua, H. W. (2013). Energy analysis of semi-transparent BIPV in Singapore buildings. Energy and Buildings, 66, 274-281. doi:10.1016/j.enbuild.2013.07.029 es_ES
dc.description.references Ihara, T., Gao, T., Grynning, S., Jelle, B. P., & Gustavsen, A. (2015). Aerogel granulate glazing facades and their application potential from an energy saving perspective. Applied Energy, 142, 179-191. doi:10.1016/j.apenergy.2014.12.053 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem