- -

Effects of dietary supplementation with taurine on production performance of Angora rabbits

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Effects of dietary supplementation with taurine on production performance of Angora rabbits

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Liu, Gongyan Y. es_ES
dc.contributor.author Jiang, W. X. es_ES
dc.contributor.author Sun, H. T. es_ES
dc.contributor.author Gao, S. X. es_ES
dc.contributor.author Yang, L. P. es_ES
dc.contributor.author Liu, C. es_ES
dc.contributor.author Bai, L. Y. es_ES
dc.date.accessioned 2021-04-14T09:48:50Z
dc.date.available 2021-04-14T09:48:50Z
dc.date.issued 2021-03-31
dc.identifier.issn 1257-5011
dc.identifier.uri http://hdl.handle.net/10251/165123
dc.description.abstract [EN] This study aimed to evaluate the effects of dietary supplementation with taurine on production performance, serum biochemistry, immunoglobulin, antioxidant and hormones of Angora rabbits. A total of 160 8-month-old Angora rabbits with similar body weight were randomly assigned to one of four dietary groups, with 40 animals per group. The dietary groups consisted of the following different taurine supplementation levels: 0 (control), 0.1, 0.2, and 0.3% (air-dry basis). The 73-d feeding trial (from July 31 to October 11, 2016 in China) included a 7-d adjustment period and a 66-d experimental period. The results showed that taurine dietary supplementation had effects on feed consumption, hair follicle density and wool yield of the Angora rabbits (P<0.05), and adding 0.2% taurine could improve the wool yield. Compared with the control group, serum total cholesterol and low-density lipoprotein levels in supplemented groups were decreased (P<0.05). Dietary supplementation with taurine could improve the activity of superoxide dismutase, enhance total antioxidant capacity and reduce the content of malondialdehyde in serum (P<0.05). Besides, the serum level of thyroid (T4) hormone and insulin-like growth factor-1 in experimental groups was higher than that in the control group (P<0.05). In conclusion, taurine dietary supplementation could reduce the lipid metabolism, enhance the antioxidant capacity and hormone level of Angora rabbits, and adding 0.2% taurine could achieve the effect of increasing wool production. es_ES
dc.description.sponsorship This study was partially funded by the National Natural Science Foundation of China (No. 31501927), Natural Science Foundation of Shandong Province (No. ZR2020MC163), the Thoroughbred Project from Shandong government (2017LZN008), and Shandong Province Modern Agricultural Technology System Innovation Team (SDAIT-21). es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof World Rabbit Science es_ES
dc.rights Reconocimiento - No comercial - Compartir igual (by-nc-sa) es_ES
dc.subject Taurine es_ES
dc.subject Production performance es_ES
dc.subject Blood index es_ES
dc.subject Angora rabbit es_ES
dc.title Effects of dietary supplementation with taurine on production performance of Angora rabbits es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/wrs.2021.13133
dc.relation.projectID info:eu-repo/grantAgreement/NSFC//31501927/
dc.relation.projectID info:eu-repo/grantAgreement/Natural Science Foundation of Shandong Province//ZR2020MC163/
dc.relation.projectID info:eu-repo/grantAgreement/Shandong Province Key Agricultural Project for Application Technology Innovation//SDAIT-21/
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Liu, GY.; Jiang, WX.; Sun, HT.; Gao, SX.; Yang, LP.; Liu, C.; Bai, LY. (2021). Effects of dietary supplementation with taurine on production performance of Angora rabbits. World Rabbit Science. 29(1):11-18. https://doi.org/10.4995/wrs.2021.13133 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/wrs.2021.13133 es_ES
dc.description.upvformatpinicio 11 es_ES
dc.description.upvformatpfin 18 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 29 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-8886
dc.relation.pasarela OJS\13133 es_ES
dc.contributor.funder National Natural Science Foundation of China es_ES
dc.contributor.funder Natural Science Foundation of Shandong Province es_ES
dc.contributor.funder Shandong Province Key Agricultural Project for Application Technology Innovation es_ES
dc.description.references Allain D., Rochambeau H.D., Thébault R.G., Vrillon, J.L. 1999. The inheritance of wool quantity and live weight in the French Angora rabbit. Anim. Sci., 68: 441-447. https://doi.org/10.1017/S1357729800050451 es_ES
dc.description.references Allain D., Rougeot J. 1980. Induction of autumn moult in mink with melatonin. Reprod. Nutr. Develop., 20: 197-201. https://doi.org/10.1051/rnd:19800114 es_ES
dc.description.references Allain D., Thebault R.G. 1988. Effects of various melatonin treatments on summer wool production in Angora rabbits. In Proc.: 4th World Rabbit Congress, October 1988, Budapest, Hungary. es_ES
dc.description.references Association of Official Analytical Chemists (AOAC). 2005. Official methods of analyses. 18th ed. AOAC, Maryland, USA. es_ES
dc.description.references Bai L., Jiang W., Wang W., Gao S., Sun H., Yang L., Hu H. 2019. Optimum wool harvest interval of angora rabbits under organised farm conditions in East China. World Rabbit Sci., 27: 57-63. https://doi.org/10.4995/wrs.2019.10838 es_ES
dc.description.references Bañuelos Vargas I., López L.M., Pérez Jiménez A., Peres H. 2014. Effect of fish meal replacement by soy protein concentrate with taurine supplementation on hepatic intermediary metabolism and antioxidant status of totoaba juveniles (Totoaba macdonaldi ). Comp. Biochem. Phys. B., 170: 18-25. https://doi.org/10.1016/j.cbpb.2014.01.003 es_ES
dc.description.references Bouckenooghe T., Remacle C., Reusens B. 2006. Is taurine a functional nutrient? Curr. Opin. Clin. Nutr., 9: 728-733. https://doi.org/10.1097/01.mco.0000247469.26414.55 es_ES
dc.description.references Chang Y., Chou C., Chiu C, Yang K, Lin Y., Weng W., Chen Y. 2010. Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. J. Agr. Food Chem., 59: 450-457. https://doi.org/10.1021/jf103167u es_ES
dc.description.references Cheng C., Guo Z., Wang A. 2018. The protective effects of taurine on oxidative stress, cytoplasmic free-Ca2+ and apoptosis of pufferfish (Takifugu obscurus) under low temperature stress. Fish Shellfish Immun., 77: 457-464. https://doi.org/10.1016/j.fsi.2018.04.022 es_ES
dc.description.references Chian J., Junichi A., Stephen S. 2012. Mechanism underlying the antioxidant activity of taurine: Prevention of mitochondrial oxidant production. Amino Acids, 42: 2223-2232. https://doi.org/10.1007/s00726-011-0962-7 es_ES
dc.description.references De Moura L.B., Diógenes A.F., Campelo D.A.V., de Almeida F.L.A., Pousão-Ferreira P.M., Furuya W.M., Oliva-Teles A., Peres H. 2018. Taurine and methionine supplementation as a nutritional strategy for growth promotion of meagre (Argyrosomus regius) fed high plant protein diets. Aquaculture, 497: 389-395. https://doi.org/10.1016/j.aquaculture.2018.07.038 es_ES
dc.description.references Hayes J., Tipton K.F., Bianchi L., Corte L.D. 2011. Complexities in the neurotoxic actions of 6-hydroxydopamine in relation to the cytoprotective properties of taurine. British Res. Bull., 55: 239-245. https://doi.org/10.1016/S0361-9230(01)00507-X es_ES
dc.description.references He J., Zhang K., Chen D., Ding X., Feng G., Ao X. 2013. Effects of maize naturally contaminated with aflatoxin B1 on growth performance, blood profiles and hepatic histopathology in ducks. Livest. Sci., 152: 192-199. https://doi.org/10.1016/j.livsci.2012.12.019 es_ES
dc.description.references Huang C., Guo Y., Yuan J. 2014a. Dietary taurine impairs intestinal growth and mucosal structure of broiler chickens by increasing toxic bile acid concentrations in the intestine. Poult. Sci., 93: 1475-1483. https://doi.org/10.3382/ps.2013-03533 es_ES
dc.description.references Huang C.X., Wang B., Min Z., Yuan J. 2014b. Dietary inclusion level and time effects of taurine on broiler performance, meat quality, oxidative status and muscle taurine content. Brit. Poult. Sci., 55: 598-604. https://doi.org/10.1080/00071668.2014.943692 es_ES
dc.description.references Huang G.J., Deng J.S., Huang S.S., Shao Y.Y., Chen C.C., Kuo Y.H. 2012. Protective effect of antrosterol from Antrodia camphorata submerged whole broth against carbon tetrachloride-induced acute liver injury in mice. Food Chem., 132: 709-716. https://doi.org/10.1016/j.foodchem.2011.11.004 es_ES
dc.description.references Huang R.S., Peng Z.L. 2008. Effect of diet type and dietary turine supplementation on growth performance of weaning pigs. Cereal Feed Indian, 9: 44-45. es_ES
dc.description.references Huxtable R. 1992. Physiological actions of taurine. Physiol. Rev., 72: 101-163. https://doi.org/10.1152/physrev.1992.72.1.101 es_ES
dc.description.references Katoch S., Smbher V.K., Manuja N.K., Thakur Y.P., Gupta K. 1999. Studies on genetic and phenotypic parameters for wool production traits in Angora rabbits. Indian J. Anim. Res., 33: 126-128. es_ES
dc.description.references Lee J.Y., Jung D.W., Park H. A., Kim S. J., Chung J. H., Moon C. K., Kim Y. C. 2004. Effect of taurine on biliary excretion and metabolism of acetaminophen in male hamsters. Biol. Pharm. Bul., 27: 1792-1796. https://doi.org/10.1248/bpb.27.1792 es_ES
dc.description.references Lima L., Obregon F., Cubillos S., Fazzino F., Jaimes I. 2001. Taurine as a micronutrient in development and regeneration of the central nervous system. Nutr. Neurosci., 4: 439-443. https://doi.org/10.1080/1028415X.2001.11747379 es_ES
dc.description.references Lima L., Obregon F., Rousso T., Quintal M., Benzo Z., Auladell C. 2004. Content and concentration of taurine, hypotaurine, and zinc in the retina, the hippocampus, and the dentate gyrus of the rat at various postnatal days. Neurochem. Res., 29: 247-255. https://doi.org/10.1023/B:NERE.0000010453.96832.97 es_ES
dc.description.references Liu Y., Mao X., Yu B., He J., Zheng P., Yu J., Luo J., Chen D. 2014. Excessive dietary taurine supplementation reduces growth performance, liver and intestinal health of weaned pigs. Livest. Sci., 168: 109-119. https://doi.org/10.1016/j.livsci.2014.08.014 es_ES
dc.description.references Matsunari H., Furuita H., Yamamoto T., Kim S.K., Sakakura Y., Takeuchi T. 2008. Effect of dietary taurine and cystine on growth performance of juvenile red sea bream Pagrus major. Aquaculture, 274: 142-147. https://doi.org/10.1016/j.aquaculture.2007.11.002 es_ES
dc.description.references Militante J.D., Lombardini J.B. 2002. Taurine: evidence of physiological function in the retina. Nutr. Neurosci., 5: 75. https://doi.org/10.1080/10284150290018991 es_ES
dc.description.references Morales A.E., Pérez-Jiménez A., Hidalgo M.C., Abellán E., Cardenete G. 2004. Oxidative stress and antioxidant defenses after prolonged starvation in Dentex dentex liver. Comp. Biochem. Phys. C., 139: 153-161. https://doi.org/10.1016/j.cca.2004.10.008 es_ES
dc.description.references Murakami S., Sakurai T., Tomoike H., Sakono M., Nasu T., Fukuda N. 2010. Prevention of hypercholesterolemia and atherosclerosis in the hyperlipidemia and atherosclerosis-prone Japanese (LAP) quail by taurine supplementation. Amino Acids, 38: 271-278. https://doi.org/10.1007/s00726-009-0247-6 es_ES
dc.description.references National Research Council (NRC) 1977. Nutrient requirements of rabbits, 2nd ed. National Academy Press, Washington, DC, USA. es_ES
dc.description.references Park G.S., Takeuchi T., Yokoyama M., Seikai T. 2002. Optimal dietary taurine level for growth of juvenile Japanese flounder Paralichthys olivaceus. Fisheries Sci., 68: 824-829. https://doi.org/10.1046/j.1444-2906.2002.00498.x es_ES
dc.description.references Pasantes-Morales H., Quesada O., Moran J. 1998. Taurine: an osmolyte in mammalian tissues. Adv. Exp. Med. Biol., 442: 209. https://doi.org/10.1007/978-1-4899-0117-0_27 es_ES
dc.description.references Pérez-Jiménez A., Peres H., Rubio V. C., Oliva-Teles A. 2012. The effect of hypoxia onintermediary metabolism and oxidative status in gilthead sea bream (Sparus aurata) fed on diets supplemented with methionine and white tea. Comp. Biochem. Phys. C., 155: 506-516. https://doi.org/10.1016/j.cbpc.2011.12.005 es_ES
dc.description.references Rafat S.A., Allain D., Thebault R.G., Rochambeau H. D. 2007. Divergent selection for fleece weight in French Angora rabbits: Non-genetic effects, genetic parameters and response to selection. Livest. Sci., 106: 169-175. https://doi.org/10.1016/j.livsci.2006.08.001 es_ES
dc.description.references Redmond H.P., Stapleton P., Neary P., Bouchier-Hayes D. 1998. Immunonutrition: the role of taurine. Nutrition, 14: 599-604. https://doi.org/10.1016/S0899-9007(98)00097-5 es_ES
dc.description.references Roghayeh D., Amin O., Mansour T. M., Vahid M., Dara B. 2020. Effects of dietary taurine on growth performance, antioxidant status, digestive enzymes activities and skin mucosal immune responses in yellowfin seabream, Acanthopagrus latus. Aquaculture, 517: 734795. https://doi.org/10.1016/j.aquaculture.2019.734795 es_ES
dc.description.references Rosemberg D.B., da Rocha R.F., Rico E.P., Zanotto-Filho A.L.F.E.U., Dias R.D., Bogo M.R., Souza D.O. 2010. Taurine prevents enhancement of acetylcholinesterase activity induced by acute ethanol exposure and decreases the level of markers of oxidative stress in zebra fish brain. Neuroscience, 171: 683-692. https://doi.org/10.1016/j.neuroscience.2010.09.030 es_ES
dc.description.references Rougeot, J., Thebault R.G., Allain D. 1986. Suppression de la chute estivale de la production du poil chez la lapine angora par la pose d'implants de mélatonine. Annales de Zootechnie 35: 363-372. https://doi.org/10.1051/animres:19860405 es_ES
dc.description.references Salze G.P., Davis D.A. 2015. Taurine: a critical nutrient for future fish feeds. Aquaculture, 437: 215-229. https://doi.org/10.1016/j.aquaculture.2014.12.006 es_ES
dc.description.references Schaffer S.W., Ito T., Azuma J. 2014. Clinical significance of taurine. Amino Acids, 46: 1-5. https://doi.org/10.1007/s00726-013-1632-8 es_ES
dc.description.references Schaffer S., Kim H.W. 2018. Effects and mechanisms of taurine as a therapeutic agent. Biomol. Ther. (Seoul), 26: 225-241. https://doi.org/10.4062/biomolther.2017.251 es_ES
dc.description.references Schlink A.C., Liu S.M. 2003. Angora Rabbits: A Potential New Industry for Australia: a report for the Rural Industries Research and Development Corporation. CSIRO Livestock Industries. RIRDC Publication No 03/014, RIRDC Project No CSA-19A. pp.34. es_ES
dc.description.references Smith J.M., van Amburgh M.E., Díaz M.C., Lucy M.C., Bauman D.E. 2002. Effect of nutrient intake on the development of the somatotropic axis and its responsiveness to GH in Holstein bull calves. J. Anim. Sci., 80: 1528-1537. https://doi.org/10.2527/2002.8061528x es_ES
dc.description.references State Bureau of Technical Supervision of the People's Republic of China, GB/T 5009.169-2003. Determination of Taurine in Foods. Beijing: China Standards Press. es_ES
dc.description.references Surai P.F., Fisinin V.I. 2016a. Vitagenes in poultry production: Part 2. Nutritional and internal stresses. World Poultry Sci. J., 72: 761-772. https://doi.org/10.1017/S0043933916000726 es_ES
dc.description.references Surai P.F., Fisinin V.I. 2016b. Vitagenes in poultry production: part 1. Technological and environmental stresses. World Poultry Sci. J., 72: 721-734. https://doi.org/10.1017/S0043933916000714 es_ES
dc.description.references Tdolini B., Pintus G., Pinna G.G., Bennardini F., Franconi F. 1995. Effects of taurine and hypotaurine on lipid peroxidation. Biochem. Bioph. Res. Co., 213: 820-826. https://doi.org/10.1006/bbrc.1995.2203 es_ES
dc.description.references Thébault R.G., Vrillon J.L., Allain D., Fahrat D., Rochambeau H.D. 1992. Effect of non-genetics factors on quantitative and qualitative features about Angora wool production in French farms. J. Applied Rabbit Res., 15: 1568-1575. es_ES
dc.description.references Thompson G.N., Tomas F.M. 1987. Protein metabolism in cystic fibrosis: responses to malnutrition and taurine supplementation. Am. J. Clin. Nutr., 46: 606-613. https://doi.org/10.1093/ajcn/46.4.606 es_ES
dc.description.references Tong S., Wang L., Kalhoro H., Volatiana J.A., Shao Q. 2019. Effects of supplementing taurine in all-plant protein diets on growth performance, serum parameters, and cholesterol 7α-hydroxylase gene expression in black sea bream, Acanthopagrus schlegelii. J. World Aquacult. Soc., 51: 990-1001. https://doi.org/10.1111/jwas.12611 es_ES
dc.description.references Wang F., Dong X., Zhang X., Tong J., Xie Z., Zhang Q. 2010a. Effects of dietary taurine on egg production, egg quality and cholesterol levels in Japanese quail. J. Sci. Food Agr., 90: 2660-2663. https://doi.org/10.1002/jsfa.4136 es_ES
dc.description.references Wang F., Dong X., Zhang X., Tong J., Zhang Q. 2010b. Effects of taurine on egg production, immune responses and fat metabolism in laying quails. Food Sci. Biotechnol., 3: 381-384. es_ES
dc.description.references Wright C.E., Tallan H.H., Lin Y.Y. 1986. Taurine: biological update. Annu. Rev. Biochem., 55: 427-453. https://doi.org/10.1146/annurev.bi.55.070186.002235 es_ES
dc.description.references Yannis K., Vikas K., Theofania T. 2019. Effects of taurine supplementation in soy-based diets on growth performance and fillet quality in European sea bass (Dicentrarchus labrax). Aquaculture, 11: 734655. https://doi.org/10.1016/j.aquaculture.2019.734655 es_ES
dc.description.references Yun B., Ai Q., Mai K., Xu W., Qi G., Luo Y. 2012. Synergistic effects of dietary cholesterol and taurine on growth performance and cholesterol metabolism in juvenile turbot (Scophthalmus maximus L.) fed high plant protein diets. Aquaculture, 324: 85-91. https://doi.org/10.1016/j.aquaculture.2011.10.012 es_ES
dc.description.references Zeng D., Gao Z., Huang X., Zhao J., Huang G., Duo L. 2012. Effect of taurine on lipid metabolism of broilers. J. Applied Anim. Res., 40: 86-89. https://doi.org/10.1080/09712119.2011.588386 es_ES
dc.description.references Zhang M., Li M., Wang R., Qian Y. 2018. Effects of acute ammonia toxicity on oxidative stress, immune response and apoptosis of juvenile yellow catfish Pelteobagrus fulvidraco and the mitigation of exogenous taurine. Fish Shellfish Immun., 79: 313-320. https://doi.org/10.1016/j.fsi.2018.05.036 es_ES
dc.description.references Zhu Y., Wu Z., Liu H., Liu G., Li F. 2019. Methionine promotes the development of hair follicles via the Wnt/β-catenin signalling pathway in Rex rabbits. J. Anim. Physiol. Anim. Nutr., 00: 1-6. https://doi.org/10.1111/jpn.13238 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem