Mostrar el registro sencillo del ítem
dc.contributor.author | Salem, Aymen Haj | es_ES |
dc.contributor.author | Hattab, Hawete | es_ES |
dc.contributor.author | Rejeiba, Tarek | es_ES |
dc.date.accessioned | 2021-04-16T07:18:11Z | |
dc.date.available | 2021-04-16T07:18:11Z | |
dc.date.issued | 2021-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/165240 | |
dc.description.abstract | [EN] Let X be a local dendrite, and f : X → X be a map. Denote by E(X) the set of endpoints of X. We show that if E(X) is countable, then the following are equivalent:(1) f is equicontinuous;(2) fn (X) = R(f);(3) f| fn (X) is equicontinuous;(4) f| fn (X) is a pointwise periodic homeomorphism or is topologically conjugate to an irrational rotation of S 1 ;(5) ω(x, f) = Ω(x, f) for all x ∈ X.This result generalizes [17, Theorem 5.2], [24, Theorem 2] and [11, Theorem 2.8]. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Dendrite | es_ES |
dc.subject | Equicontinuity | es_ES |
dc.subject | Local dendrite | es_ES |
dc.subject | Recurrent point | es_ES |
dc.title | Equicontinuous local dendrite maps | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2021.13446 | |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Salem, AH.; Hattab, H.; Rejeiba, T. (2021). Equicontinuous local dendrite maps. Applied General Topology. 22(1):67-77. https://doi.org/10.4995/agt.2021.13446 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2021.13446 | es_ES |
dc.description.upvformatpinicio | 67 | es_ES |
dc.description.upvformatpfin | 77 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\13446 | es_ES |
dc.description.references | H. Abdelli, ω-limit sets for monotone local dendrite maps. Chaos, Solitons and Fractals, 71 (2015), 66-72. https://doi.org/10.1016/j.chaos.2014.12.003 | es_ES |
dc.description.references | H. Abdelli and H. Marzougui, Invariant sets for monotone local dendrite maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 26, no. 9 (2016), 1650150 (10 pages). https://doi.org/10.1142/S0218127416501509 | es_ES |
dc.description.references | E. Akin, J. Auslander and K. Berg, When is a transitive map chaotic?, in: Convergence in Ergodic Theory and Probability, Walter de Gruyter and Co., Berlin, 1996, pp. 25-40. https://doi.org/10.1515/9783110889383.25 | es_ES |
dc.description.references | G. Askri and I. Naghmouchi, Pointwise recurrence on local dendrites, Qual. Theory Dyn Syst 19, 6 (2020). https://doi.org/10.1007/s12346-020-00347-8 | es_ES |
dc.description.references | F. Balibrea, T. Downarowicz, R. Hric, L. Snoha and V. Spitalsky, Almost totally disconnected minimal systems, Ergodic Th. & Dynam Sys. 29, no. 3 (2009), 737-766. https://doi.org/10.1017/S0143385708000540 | es_ES |
dc.description.references | F. Blanchard, B. Host and A. Maass, Topological complexity, Ergodic Th. $&$ Dynam Sys. 20 (2000), 641-662. https://doi.org/10.1017/S0143385700000341 | es_ES |
dc.description.references | A. M. Blokh, Pointwise-recurrent maps on uniquely arcwise connected locally arcwise connected spaces, Proc. Amer. Math. Soc. 143 (2015), 3985-4000. https://doi.org/10.1090/S0002-9939-2015-12589-0 | es_ES |
dc.description.references | A. M. Blokh, The set of all iterates is nowhere dense in C([0,1],[0,1]), Trans. Amer. Math. Soc. 333, no. 2 (1992), 787-798. https://doi.org/10.1090/S0002-9947-1992-1153009-7 | es_ES |
dc.description.references | W. Boyce, Γ-compact maps on an interval and fixed points, Trans. Amer. Math. Soc. 160 (1971), 87-102. https://doi.org/10.1090/S0002-9947-1971-0280655-1 | es_ES |
dc.description.references | A. M. Bruckner and T. Hu, Equicontinuity of iterates of an interval map, Tamkang J. Math. 21, no. 3 (1990), 287-294. | es_ES |
dc.description.references | J. Camargo, M. Rincón and C. Uzcátegui, Equicontinuity of maps on dendrites, Chaos, Solitons and Fractals 126 (2019), 1-6. https://doi.org/10.1016/j.chaos.2019.05.033 | es_ES |
dc.description.references | J. Cano, Common fixed points for a class of commuting mappings on an interval, Trans. Amer. Math. Soc. 86, no. 2 (1982), 336-338. https://doi.org/10.1090/S0002-9939-1982-0667301-2 | es_ES |
dc.description.references | R. Gu and Z. Qiao, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004 | es_ES |
dc.description.references | A. Haj Salem and H. Hattab, Group action on local dendrites, Topology Appl. 247, no. 15 (2018), 91-99. https://doi.org/10.1016/j.topol.2018.08.002 | es_ES |
dc.description.references | K. Kuratowski, Topology, vol. 2. New York: Academic Press; 1968. | es_ES |
dc.description.references | J. Mai, Pointwise-recurrent graph maps, Ergodic Th. & Dynam Sys. 25 (2005), 629-637. https://doi.org/10.1017/S0143385704000720 | es_ES |
dc.description.references | J. Mai, The structure of equicontinuous maps, Trans. Amer. Math. Soc. 355, no. 10 (2003), 4125-4136. https://doi.org/10.1090/S0002-9947-03-03339-7 | es_ES |
dc.description.references | C. A. Morales, Equicontinuity on semi-locally connected spaces, Topology Appl. 198 (2016), 101-106. https://doi.org/10.1016/j.topol.2015.11.011 | es_ES |
dc.description.references | S. Nadler, Continuum Theory. Inc., New York: Marcel Dekker; 1992. | es_ES |
dc.description.references | G. Su and B. Qin, Equicontinuous dendrites flows, Journal of Difference Equations and Applications 25, no. 12 (2019), 1744-1754. https://doi.org/10.1080/10236198.2019.1694012 | es_ES |
dc.description.references | T. Sun, Equicontinuity of σ-maps, Pure and Applied Math. 16, no. 3 (2000), 9-14. | es_ES |
dc.description.references | T. Sun, Z. Chen, X. Liu and H. G. Xi, Equicontinuity of dendrite maps, Chaos, Solitons and Fractals 69 (2014), 10-13. https://doi.org/10.1016/j.chaos.2014.08.010 | es_ES |
dc.description.references | T. Sun, G. Wang and H. J. Xi, Equicontinuity of maps on a dendrite with finite branch points. Acta Mat. Sin. 33, no. 8 (2017), 1125-1130. https://doi.org/10.1007/s10114-017-6289-x | es_ES |
dc.description.references | T. Sun, Y. Zhang and X. Zhang, Equicontinuity of a graph map, Bull. Austral Math. Soc. 71 (2005), 61-67. https://doi.org/10.1017/S0004972700038016 | es_ES |
dc.description.references | A. Valaristos, Equicontinuity of iterates of circle maps, Internat. J. Math. and Math. Sci. 21 (1998), 453-458. https://doi.org/10.1155/S0161171298000623 | es_ES |