- -

Digital homotopic distance between digital functions

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Digital homotopic distance between digital functions

Mostrar el registro completo del ítem

Borat, A. (2021). Digital homotopic distance between digital functions. Applied General Topology. 22(1):183-192. https://doi.org/10.4995/agt.2021.14542

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165251

Ficheros en el ítem

Metadatos del ítem

Título: Digital homotopic distance between digital functions
Autor: Borat, Ayse
Fecha difusión:
Resumen:
[EN] In this paper, we define digital homotopic distance and give its relation with LS category of a digital function and of a digital image. Moreover, we introduce some properties of digital homotopic distance such as ...[+]
Palabras clave: Homotopic distance , Lusternik Schnirelmann category , Digital topology
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.14542
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.14542
Agradecimientos:
The author would like to thank Tane Vergili and the referees for their helpful suggestions. In particular, the author would like to thank the referee who contributed Proposition 3.2 and Example 4.3.
Tipo: Artículo

References

C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.

A. Borat and T. Vergili, Digital Lusternik-Schnirelmann category, Turkish Journal of Mathematics 42, no 1 (2018), 1845-1852. https://doi.org/10.3906/mat-1801-94

A. Borat and T. Vergili, Higher homotopic distance, Topological Methods in Nonlinear Analysis, to appear. [+]
C. Berge, Graphs and Hypergraphs, 2nd edition, North-Holland, Amsterdam, 1976.

A. Borat and T. Vergili, Digital Lusternik-Schnirelmann category, Turkish Journal of Mathematics 42, no 1 (2018), 1845-1852. https://doi.org/10.3906/mat-1801-94

A. Borat and T. Vergili, Higher homotopic distance, Topological Methods in Nonlinear Analysis, to appear.

L. Boxer, Digitally continuous functions, Pattern Recognit. Lett. 15 (1994), 883-839. https://doi.org/10.1016/0167-8655(94)90012-4

L. Boxer, A classical construction for the digital fundamental group, Journal of Mathematical Imaging and Vision 10 (1999), 51-62. https://doi.org/10.1023/A:1008370600456

L. Boxer, Homotopy properties of sphere-like digital images, J. Math. Imaging Vision, 24 (2006), 167-175. https://doi.org/10.1007/s10851-005-3619-x

L. Boxer, Alternate product adjacencies in digital topology, Applied General Topology 19, no. 1 (2018), 21-53. https://doi.org/10.4995/agt.2018.7146

O. Cornea, G. Lupton, J. Oprea and D. Tanre, Lusternik-Schnirelmann Category, Mathematical Surveys and Monographs, vol. 103, American Mathematical Society 2003. https://doi.org/10.1090/surv/103

M. Farber, Topological complexity of motion planning, Discrete and Computational Geometry 29 (2003), 211-221. https://doi.org/10.1007/s00454-002-0760-9

S. E. Han, Non-product property of the digital fundamental group, Information Sciences 171 (2005), 73-91. https://doi.org/10.1016/j.ins.2004.03.018

M. Is and I. Karaca, The higher topological complexity in digital images, Applied General Topology 21, no. 2 (2020), 305-325. https://doi.org/10.4995/agt.2020.13553

I. Karaca and M. Is, Digital topological complexity numbers, Turkish Journal of Mathematics 42, no. 6 (2018), 3173-3181. https://doi.org/10.3906/mat-1807-101

E. Khalimsky, Motion, deformation, and homotopy in finite spaces, Proceedings IEEE International Conference on Systems, Man, and Cybernetics (1987), 227-234.

G. Lupton, J. Oprea and N. A. Scoville, Homotopy theory in digital topology, ArXiv: 1905.07783.

G. Lupton, J. Oprea and N. A. Scoville, Subdivisions of maps of digital images, ArXiv: 1906.03170.

E. Macias-Virgos and D. Mosquera-Lois, Homotopic distance between maps, Math. Proc. Cambridge Philos. Soc., to appear.

G. Sabidussi, Graph multiplication, Math. Z. 72 (1960), 446-457. https://doi.org/10.1007/BF01162967

T. Vergili and A. Borat, Digital Lusternik-Schnirelmann category of digital functions, Hacettepe Journal of Mathematics and Statistics 49, no. 4 (2020), 1414-1422. https://doi.org/10.15672/hujms.559796

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem