- -

Duality of locally quasi-convex convergence groups

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Duality of locally quasi-convex convergence groups

Mostrar el registro completo del ítem

Sharma, P. (2021). Duality of locally quasi-convex convergence groups. Applied General Topology. 22(1):193-198. https://doi.org/10.4995/agt.2021.14585

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165252

Ficheros en el ítem

Metadatos del ítem

Título: Duality of locally quasi-convex convergence groups
Autor: Sharma, Pranav
Fecha difusión:
Resumen:
[EN] In the realm of the convergence spaces, the generalisation of topological groups is the convergence groups, and the corresponding extension of the Pontryagin duality is the continuous duality. We prove that local ...[+]
Palabras clave: Continuous duality , Convergence groups , Local quasi-convexity , Pontryagin duality
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Applied General Topology. (issn: 1576-9402 ) (eissn: 1989-4147 )
DOI: 10.4995/agt.2021.14585
Editorial:
Universitat Politècnica de València
Versión del editor: https://doi.org/10.4995/agt.2021.14585
Agradecimientos:
We thank Prof. H.-P. Butzmann and the anonymous reviewers for their many insightful comments and suggestions.
Tipo: Artículo

References

L. Außenhofer, Contributions to the Duality Theory of Abelian Topological Groups and to the Theory of Nuclear Groups, Dissertationes mathematicae. Institute of Mathematics, Polish Academy of Sciences, 1999.

W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Matheatics, Springer Berlin Heidelberg, 1991. https://doi.org/10.1007/BFb0089147

R. Beattie and H.-P. Butzmann, Convergence Structures and Applications to Functional Analysis, Bücher, Springer Netherlands, 2013. [+]
L. Außenhofer, Contributions to the Duality Theory of Abelian Topological Groups and to the Theory of Nuclear Groups, Dissertationes mathematicae. Institute of Mathematics, Polish Academy of Sciences, 1999.

W. Banaszczyk, Additive Subgroups of Topological Vector Spaces, Lecture Notes in Matheatics, Springer Berlin Heidelberg, 1991. https://doi.org/10.1007/BFb0089147

R. Beattie and H.-P. Butzmann, Convergence Structures and Applications to Functional Analysis, Bücher, Springer Netherlands, 2013.

M. Bruguera, Topological groups and convergence groups: Study of the Pontryagin duality, Thesis, 1999.

H.-P. Butzmann, Über diec-Reflexivität von Cc (X), Comment. Math. Helv. 47, no. 1 (1972), 92-101. https://doi.org/10.1007/BF02566791

H.-P. Butzmann, Duality theory for convergence groups, Topology Appl. 111, no. 1 (2000), 95-104. https://doi.org/10.1016/S0166-8641(99)00188-1

M. J. Chasco and E. Martín-Peinador, Binz-Butzmann duality versus Pontryagin duality, Arch. Math. (Basel) 63, no. 3 (1994), 264-270. https://doi.org/10.1007/BF01189829

M. J. Chasco, D. Dikranjan and E. Martín-Peinador, A survey on reflexivity of abelian topological groups, Topology Appl. 159, no. 9 (2012), 2290-2309. https://doi.org/10.1016/j.topol.2012.04.012

S. Dolecki and F. Mynard, Convergence Foundations of Topology, World Scientific Publishing Company, 2016. https://doi.org/10.1142/9012

E. Martín-Peinador, A reflexive admissible topological group must be locally compact, Proc. Amer. Math. Soc. 123, no. 11 (1995), 3563-3566. https://doi.org/10.2307/2161108

E. Martín-Peinador and V. Tarieladze, A property of Dunford-Pettis type in topological groups, Proc. Amer. Math. Soc. 132, no. 6 (2004), 1827-1837. https://doi.org/10.1090/S0002-9939-03-07249-6

P. Sharma, Locally quasi-convex convergence groups, Topology Appl. 285 (2020), 107384. https://doi.org/10.1016/j.topol.2020.107384

P. Sharma and S. Mishra, Duality in topological and convergence groups, Top. Proc., to appear.

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem