- -

On the Menger and almost Menger properties in locales

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

On the Menger and almost Menger properties in locales

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Bayih, Tilahun es_ES
dc.contributor.author Dube, Themba es_ES
dc.contributor.author Ighedo, Oghenetega es_ES
dc.date.accessioned 2021-04-16T09:22:29Z
dc.date.available 2021-04-16T09:22:29Z
dc.date.issued 2021-04-01
dc.identifier.issn 1576-9402
dc.identifier.uri http://hdl.handle.net/10251/165253
dc.description.abstract [EN] The Menger and the almost Menger properties are extended to locales. Regarding the former, the extension is conservative (meaning that a space is Menger if and only if it is Menger as a locale), and the latter is conservative for sober TD-spaces. Non-spatial Menger (and hence almost Menger) locales do exist, so that the extensions genuinely transcend the topological notions. We also consider projectively Menger locales, and show that, as in spaces, a locale is Menger precisely when it is Lindelöf and projectively Menger. Transference of these properties along localic maps (via direct image or pullback) is considered. es_ES
dc.description.sponsorship The second-named author acknowledges funding from the National Research Foundation of South Africa under Grant 113829. es_ES
dc.language Inglés es_ES
dc.publisher Universitat Politècnica de València es_ES
dc.relation.ispartof Applied General Topology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Menger es_ES
dc.subject Almost Menger es_ES
dc.subject Frame es_ES
dc.subject Locale es_ES
dc.subject Sublocale es_ES
dc.subject Spectrum of a frame es_ES
dc.title On the Menger and almost Menger properties in locales es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.4995/agt.2021.14915
dc.relation.projectID info:eu-repo/grantAgreement/NRF//113829/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Bayih, T.; Dube, T.; Ighedo, O. (2021). On the Menger and almost Menger properties in locales. Applied General Topology. 22(1):199-221. https://doi.org/10.4995/agt.2021.14915 es_ES
dc.description.accrualMethod OJS es_ES
dc.relation.publisherversion https://doi.org/10.4995/agt.2021.14915 es_ES
dc.description.upvformatpinicio 199 es_ES
dc.description.upvformatpfin 221 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 22 es_ES
dc.description.issue 1 es_ES
dc.identifier.eissn 1989-4147
dc.relation.pasarela OJS\14915 es_ES
dc.contributor.funder National Research Foundation, South Africa es_ES
dc.description.references R. N. Ball and J. Walters-Wayland, C- and C*-quotients in pointfree topology, Dissert. Math. (Rozprawy Mat.) 412 (2002), 1-62. https://doi.org/10.4064/dm412-0-1 es_ES
dc.description.references B. Banaschewski and C. Gilmour, Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin. 37 (1996), 579-589 es_ES
dc.description.references B. Banaschewski and A. Pultr, Variants of openness, Appl. Categ. Structures 2 (1994), 331-350. https://doi.org/10.1007/BF00873038 es_ES
dc.description.references M. Bonanzinga, F. Cammaroto and M. Matveev, Projective versions of selection principles, Topology Appl. 157 (2010), 874-893. https://doi.org/10.1016/j.topol.2009.12.004 es_ES
dc.description.references C. H. Dowker and D. Strauss, Paracompact frames and closed maps, in: Symposia Mathematica, Vol. XVI, pp. 93-116 (Convegno sulla Topologia Insiemistica e Generale, INDAM, Rome, 1973) Academic Press, London, 1975. es_ES
dc.description.references C. H. Dowker and D. Strauss, Sums in the category of frames, Houston J. Math. 3 (1976), 17-32. es_ES
dc.description.references T. Dube, M. M. Mugochi and I. Naidoo, Cech completeness in pointfree topology, Quaest. Math. 37 (2014), 49-65. https://doi.org/10.2989/16073606.2013.779986 es_ES
dc.description.references T. Dube, I. Naidoo and C. N. Ncube, Isocompactness in the category of locales, Appl. Categ. Structures 22 (2014), 727-739. https://doi.org/10.1007/s10485-013-9341-8 es_ES
dc.description.references M. J. Ferreira, J. Picado and S. M. Pinto, Remainders in pointfree topology, Topology Appl. 245 (2018), 21-45. https://doi.org/10.1016/j.topol.2018.06.007 es_ES
dc.description.references J. Gutiérrez García, I. Mozo Carollo and J. Picado, Normal semicontinuity and the Dedekind completion of pointfree function rings, Algebra Universalis 75 (2016), 301-330. https://doi.org/10.1007/s00012-016-0378-z es_ES
dc.description.references W. He and M. Luo, Completely regular proper reflection of locales over a given locale, Proc. Amer. Math. Soc. 141 (2013), 403-408. https://doi.org/10.1090/S0002-9939-2012-11329-2 es_ES
dc.description.references P. T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982. es_ES
dc.description.references D. Kocev, Menger-type covering properties of topological spaces, Filomat 29 (2015), 99-106. https://doi.org/10.2298/FIL1501099K es_ES
dc.description.references J. Madden and J. Vermeer, Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. https://doi.org/10.1017/S0305004100064410 es_ES
dc.description.references J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Springer, Basel, 2012. https://doi.org/10.1007/978-3-0348-0154-6 es_ES
dc.description.references J. Picado and A. Pultr, Axiom $T_D$ and the Simmons sublocale theorem, Comment. Math. Univ. Carolin. 60 (2019), 701-715. es_ES
dc.description.references J. Picado and A. Pultr, Notes on point-free topology, manuscript. es_ES
dc.description.references T. Plewe, Sublocale lattices, J. Pure Appl. Algebra 168 (2002), 309-326. https://doi.org/10.1016/S0022-4049(01)00100-1 es_ES
dc.description.references V. Pták, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41-74. https://doi.org/10.24033/bsmf.1498 es_ES
dc.description.references Y.-K. Song, Some remarks on almost Menger spaces and weakly Menger spaces, Publ. Inst. Math. (Beograd) (N.S.) 112 (2015), 193-198. https://doi.org/10.2298/PIM150513031S es_ES
dc.description.references J. J. C. Vermeulen, Proper maps of locales, J. Pure Appl. Algebra 92 (1994), 79-107. https://doi.org/10.1016/0022-4049(94)90047-7 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem