Mostrar el registro sencillo del ítem
dc.contributor.author | Bayih, Tilahun | es_ES |
dc.contributor.author | Dube, Themba | es_ES |
dc.contributor.author | Ighedo, Oghenetega | es_ES |
dc.date.accessioned | 2021-04-16T09:22:29Z | |
dc.date.available | 2021-04-16T09:22:29Z | |
dc.date.issued | 2021-04-01 | |
dc.identifier.issn | 1576-9402 | |
dc.identifier.uri | http://hdl.handle.net/10251/165253 | |
dc.description.abstract | [EN] The Menger and the almost Menger properties are extended to locales. Regarding the former, the extension is conservative (meaning that a space is Menger if and only if it is Menger as a locale), and the latter is conservative for sober TD-spaces. Non-spatial Menger (and hence almost Menger) locales do exist, so that the extensions genuinely transcend the topological notions. We also consider projectively Menger locales, and show that, as in spaces, a locale is Menger precisely when it is Lindelöf and projectively Menger. Transference of these properties along localic maps (via direct image or pullback) is considered. | es_ES |
dc.description.sponsorship | The second-named author acknowledges funding from the National Research Foundation of South Africa under Grant 113829. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Universitat Politècnica de València | es_ES |
dc.relation.ispartof | Applied General Topology | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Menger | es_ES |
dc.subject | Almost Menger | es_ES |
dc.subject | Frame | es_ES |
dc.subject | Locale | es_ES |
dc.subject | Sublocale | es_ES |
dc.subject | Spectrum of a frame | es_ES |
dc.title | On the Menger and almost Menger properties in locales | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.4995/agt.2021.14915 | |
dc.relation.projectID | info:eu-repo/grantAgreement/NRF//113829/ | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.description.bibliographicCitation | Bayih, T.; Dube, T.; Ighedo, O. (2021). On the Menger and almost Menger properties in locales. Applied General Topology. 22(1):199-221. https://doi.org/10.4995/agt.2021.14915 | es_ES |
dc.description.accrualMethod | OJS | es_ES |
dc.relation.publisherversion | https://doi.org/10.4995/agt.2021.14915 | es_ES |
dc.description.upvformatpinicio | 199 | es_ES |
dc.description.upvformatpfin | 221 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 22 | es_ES |
dc.description.issue | 1 | es_ES |
dc.identifier.eissn | 1989-4147 | |
dc.relation.pasarela | OJS\14915 | es_ES |
dc.contributor.funder | National Research Foundation, South Africa | es_ES |
dc.description.references | R. N. Ball and J. Walters-Wayland, C- and C*-quotients in pointfree topology, Dissert. Math. (Rozprawy Mat.) 412 (2002), 1-62. https://doi.org/10.4064/dm412-0-1 | es_ES |
dc.description.references | B. Banaschewski and C. Gilmour, Pseudocompactness and the cozero part of a frame, Comment. Math. Univ. Carolin. 37 (1996), 579-589 | es_ES |
dc.description.references | B. Banaschewski and A. Pultr, Variants of openness, Appl. Categ. Structures 2 (1994), 331-350. https://doi.org/10.1007/BF00873038 | es_ES |
dc.description.references | M. Bonanzinga, F. Cammaroto and M. Matveev, Projective versions of selection principles, Topology Appl. 157 (2010), 874-893. https://doi.org/10.1016/j.topol.2009.12.004 | es_ES |
dc.description.references | C. H. Dowker and D. Strauss, Paracompact frames and closed maps, in: Symposia Mathematica, Vol. XVI, pp. 93-116 (Convegno sulla Topologia Insiemistica e Generale, INDAM, Rome, 1973) Academic Press, London, 1975. | es_ES |
dc.description.references | C. H. Dowker and D. Strauss, Sums in the category of frames, Houston J. Math. 3 (1976), 17-32. | es_ES |
dc.description.references | T. Dube, M. M. Mugochi and I. Naidoo, Cech completeness in pointfree topology, Quaest. Math. 37 (2014), 49-65. https://doi.org/10.2989/16073606.2013.779986 | es_ES |
dc.description.references | T. Dube, I. Naidoo and C. N. Ncube, Isocompactness in the category of locales, Appl. Categ. Structures 22 (2014), 727-739. https://doi.org/10.1007/s10485-013-9341-8 | es_ES |
dc.description.references | M. J. Ferreira, J. Picado and S. M. Pinto, Remainders in pointfree topology, Topology Appl. 245 (2018), 21-45. https://doi.org/10.1016/j.topol.2018.06.007 | es_ES |
dc.description.references | J. Gutiérrez García, I. Mozo Carollo and J. Picado, Normal semicontinuity and the Dedekind completion of pointfree function rings, Algebra Universalis 75 (2016), 301-330. https://doi.org/10.1007/s00012-016-0378-z | es_ES |
dc.description.references | W. He and M. Luo, Completely regular proper reflection of locales over a given locale, Proc. Amer. Math. Soc. 141 (2013), 403-408. https://doi.org/10.1090/S0002-9939-2012-11329-2 | es_ES |
dc.description.references | P. T. Johnstone, Stone Spaces, Cambridge University Press, Cambridge, 1982. | es_ES |
dc.description.references | D. Kocev, Menger-type covering properties of topological spaces, Filomat 29 (2015), 99-106. https://doi.org/10.2298/FIL1501099K | es_ES |
dc.description.references | J. Madden and J. Vermeer, Lindelöf locales and realcompactness, Math. Proc. Camb. Phil. Soc. 99 (1986), 473-480. https://doi.org/10.1017/S0305004100064410 | es_ES |
dc.description.references | J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics, Springer, Basel, 2012. https://doi.org/10.1007/978-3-0348-0154-6 | es_ES |
dc.description.references | J. Picado and A. Pultr, Axiom $T_D$ and the Simmons sublocale theorem, Comment. Math. Univ. Carolin. 60 (2019), 701-715. | es_ES |
dc.description.references | J. Picado and A. Pultr, Notes on point-free topology, manuscript. | es_ES |
dc.description.references | T. Plewe, Sublocale lattices, J. Pure Appl. Algebra 168 (2002), 309-326. https://doi.org/10.1016/S0022-4049(01)00100-1 | es_ES |
dc.description.references | V. Pták, Completeness and the open mapping theorem, Bull. Soc. Math. France 86 (1958), 41-74. https://doi.org/10.24033/bsmf.1498 | es_ES |
dc.description.references | Y.-K. Song, Some remarks on almost Menger spaces and weakly Menger spaces, Publ. Inst. Math. (Beograd) (N.S.) 112 (2015), 193-198. https://doi.org/10.2298/PIM150513031S | es_ES |
dc.description.references | J. J. C. Vermeulen, Proper maps of locales, J. Pure Appl. Algebra 92 (1994), 79-107. https://doi.org/10.1016/0022-4049(94)90047-7 | es_ES |