- -

Sustainable sound absorbers from fruit stones waste

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Sustainable sound absorbers from fruit stones waste

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Gadea Borrell, José Mª es_ES
dc.contributor.author Juliá Sanchis, Ernesto es_ES
dc.contributor.author Segura Alcaraz, Jorge Gabriel es_ES
dc.contributor.author Montava-Belda, Isaac es_ES
dc.date.accessioned 2021-04-17T03:32:12Z
dc.date.available 2021-04-17T03:32:12Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 0003-682X es_ES
dc.identifier.uri http://hdl.handle.net/10251/165274
dc.description.abstract [EN] Ecological and sustainable materials have a growing interest in the field of construction and buildings where recycled materials are being included as constructive solutions. Currently, fruit stones are not used in architectural acoustics and there are no scientific studies that analyse the acoustic insulation of materials manufactured by fruit stones. This work analyses the sound absorption coefficient of panels made of different fruit stones. Four types of fruit stones have been selected with different properties in terms of density, shape and porosity. They are of the hard-stone type so that they have a high durability. To determine the sound absorption coefficient, cylindrical samples with different thicknesses have been manufactured and tested in a standing wave tube. The experimental results showed that the sound absorption varies depending on the type of fruit stone and the thickness of the sample. In the frequency range from 550 Hz to 1500 Hz, some samples reach sound absorption coefficients from 0.7 to 0.95. These panels offer good acoustic insulation properties and an added value from the aesthetics point of view. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Applied Acoustics es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Agricultural waste es_ES
dc.subject Fruit stones es_ES
dc.subject Sound absorption es_ES
dc.subject Acoustic conditioning es_ES
dc.subject.classification MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS es_ES
dc.title Sustainable sound absorbers from fruit stones waste es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.apacoust.2019.107174 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures es_ES
dc.description.bibliographicCitation Gadea Borrell, JM.; Juliá Sanchis, E.; Segura Alcaraz, JG.; Montava-Belda, I. (2020). Sustainable sound absorbers from fruit stones waste. Applied Acoustics. 161:1-9. https://doi.org/10.1016/j.apacoust.2019.107174 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.apacoust.2019.107174 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 9 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 161 es_ES
dc.relation.pasarela S\406943 es_ES
dc.description.references Asdrubali, F., Schiavoni, S., & Horoshenkov, K. V. (2012). A Review of Sustainable Materials for Acoustic Applications. Building Acoustics, 19(4), 283-311. doi:10.1260/1351-010x.19.4.283 es_ES
dc.description.references Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732-1739. doi:10.1016/j.enbuild.2011.03.015 es_ES
dc.description.references Zach, J., Hroudová, J., Brožovský, J., Krejza, Z., & Gailius, A. (2013). Development of Thermal Insulating Materials on Natural Base for Thermal Insulation Systems. Procedia Engineering, 57, 1288-1294. doi:10.1016/j.proeng.2013.04.162 es_ES
dc.description.references Barreca, F., & Fichera, C. R. (2013). Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy and Buildings, 62, 507-513. doi:10.1016/j.enbuild.2013.03.040 es_ES
dc.description.references Patnaik, A., Mvubu, M., Muniyasamy, S., Botha, A., & Anandjiwala, R. D. (2015). Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings, 92, 161-169. doi:10.1016/j.enbuild.2015.01.056 es_ES
dc.description.references Buratti, C., Belloni, E., Lascaro, E., Lopez, G. A., & Ricciardi, P. (2016). Sustainable Panels with Recycled Materials for Building Applications: Environmental and Acoustic Characterization. Energy Procedia, 101, 972-979. doi:10.1016/j.egypro.2016.11.123 es_ES
dc.description.references Faustino, J., Pereira, L., Soares, S., Cruz, D., Paiva, A., Varum, H., … Pinto, J. (2012). Impact sound insulation technique using corn cob particleboard. Construction and Building Materials, 37, 153-159. doi:10.1016/j.conbuildmat.2012.07.064 es_ES
dc.description.references Pelletier, M. G., Holt, G. A., Wanjura, J. D., Bayer, E., & McIntyre, G. (2013). An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Industrial Crops and Products, 51, 480-485. doi:10.1016/j.indcrop.2013.09.008 es_ES
dc.description.references Pelletier, M. G., Holt, G. A., Wanjura, J. D., Lara, A. J., Tapia-Carillo, A., McIntyre, G., & Bayer, E. (2017). An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products. Industrial Crops and Products, 95, 342-347. doi:10.1016/j.indcrop.2016.10.042 es_ES
dc.description.references Ying, L.Z., Putra, A., Nor, M.J.M., Muhammad, N., 2016. Sound absorption of multilayer natural coir and Kenaf fibers. In: 23rd International Congress on Sound and Vibration. es_ES
dc.description.references Glé, P., Gourdon, E., & Arnaud, L. (2012). Modelling of the acoustical properties of hemp particles. Construction and Building Materials, 37, 801-811. doi:10.1016/j.conbuildmat.2012.06.008 es_ES
dc.description.references Zulkifli. (2010). Noise Control Using Coconut Coir Fiber Sound Absorber with Porous Layer Backing and Perforated Panel. American Journal of Applied Sciences, 7(2), 260-264. doi:10.3844/ajassp.2010.260.264 es_ES
dc.description.references Zulkifli, R., Nor, M. J. M., Tahir, M. F. M., Ismail, A. R., & Nuawi, M. Z. (2008). Acoustic Properties of Multi-Layer Coir Fibres Sound Absorption Panel. Journal of Applied Sciences, 8(20), 3709-3714. doi:10.3923/jas.2008.3709.3714 es_ES
dc.description.references Del Rey, R., Uris, A., Alba, J., & Candelas, P. (2017). Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications. Materials, 10(11), 1277. doi:10.3390/ma10111277 es_ES
dc.description.references Martellotta, F., Cannavale, A., De Matteis, V., & Ayr, U. (2018). Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics, 141, 71-78. doi:10.1016/j.apacoust.2018.06.022 es_ES
dc.description.references Bartocci, P., D’Amico, M., Moriconi, N., Bidini, G., & Fantozzi, F. (2015). Pyrolysis of Olive Stone for Energy Purposes. Energy Procedia, 82, 374-380. doi:10.1016/j.egypro.2015.11.808 es_ES
dc.description.references Martínez, M. L., Torres, M. M., Guzmán, C. A., & Maestri, D. M. (2006). Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 23(1), 23-28. doi:10.1016/j.indcrop.2005.03.001 es_ES
dc.description.references Lussier, M. G., Shull, J. C., & Miller, D. J. (1994). Activated carbon from cherry stones. Carbon, 32(8), 1493-1498. doi:10.1016/0008-6223(94)90144-9 es_ES
dc.description.references Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., & Rogalski, M. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 53, 112-121. doi:10.1016/j.jtice.2015.02.025 es_ES
dc.description.references Kuczmarski, M.A., Johnston, J.C., 2011. Acoustic Absorption in Porous Materials. Nasa/Tm-2011-216995. es_ES
dc.description.references Attenborough, K. (1982). Acoustical characteristics of porous materials. Physics Reports, 82(3), 179-227. doi:10.1016/0370-1573(82)90131-4 es_ES
dc.description.references Tang, X., & Yan, X. (2017). Acoustic energy absorption properties of fibrous materials: A review. Composites Part A: Applied Science and Manufacturing, 101, 360-380. doi:10.1016/j.compositesa.2017.07.002 es_ES
dc.description.references International Organization For Standardization, 2001. Acoustics - Determination of sound absorption coefficient and impedance in impedance tubes - Part 1 - Method using standing wave ratio.pdf. Int. Stand. es_ES
dc.description.references Standard, B., 2001. Acoustics-determination of sound absorption coefficient and impedance in impedance tubes—part 2: transfer-function method. BS EN ISO. es_ES
dc.description.references Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824 es_ES
dc.description.references Allard, J. F., Castagnede, B., Henry, M., & Lauriks, W. (1994). Evaluation of tortuosity in acoustic porous materials saturated by air. Review of Scientific Instruments, 65(3), 754-755. doi:10.1063/1.1145097 es_ES
dc.description.references Qunli, W. (1988). Empirical relations between acoustical properties and flow resistivity of porous plastic open-cell foam. Applied Acoustics, 25(3), 141-148. doi:10.1016/0003-682x(88)90090-4 es_ES
dc.description.references Oliva, D., & Hongisto, V. (2013). Sound absorption of porous materials – Accuracy of prediction methods. Applied Acoustics, 74(12), 1473-1479. doi:10.1016/j.apacoust.2013.06.004 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem