Mostrar el registro sencillo del ítem
dc.contributor.author | Gadea Borrell, José Mª | es_ES |
dc.contributor.author | Juliá Sanchis, Ernesto | es_ES |
dc.contributor.author | Segura Alcaraz, Jorge Gabriel | es_ES |
dc.contributor.author | Montava-Belda, Isaac | es_ES |
dc.date.accessioned | 2021-04-17T03:32:12Z | |
dc.date.available | 2021-04-17T03:32:12Z | |
dc.date.issued | 2020-04 | es_ES |
dc.identifier.issn | 0003-682X | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165274 | |
dc.description.abstract | [EN] Ecological and sustainable materials have a growing interest in the field of construction and buildings where recycled materials are being included as constructive solutions. Currently, fruit stones are not used in architectural acoustics and there are no scientific studies that analyse the acoustic insulation of materials manufactured by fruit stones. This work analyses the sound absorption coefficient of panels made of different fruit stones. Four types of fruit stones have been selected with different properties in terms of density, shape and porosity. They are of the hard-stone type so that they have a high durability. To determine the sound absorption coefficient, cylindrical samples with different thicknesses have been manufactured and tested in a standing wave tube. The experimental results showed that the sound absorption varies depending on the type of fruit stone and the thickness of the sample. In the frequency range from 550 Hz to 1500 Hz, some samples reach sound absorption coefficients from 0.7 to 0.95. These panels offer good acoustic insulation properties and an added value from the aesthetics point of view. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Applied Acoustics | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Agricultural waste | es_ES |
dc.subject | Fruit stones | es_ES |
dc.subject | Sound absorption | es_ES |
dc.subject | Acoustic conditioning | es_ES |
dc.subject.classification | MECANICA DE LOS MEDIOS CONTINUOS Y TEORIA DE ESTRUCTURAS | es_ES |
dc.title | Sustainable sound absorbers from fruit stones waste | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.apacoust.2019.107174 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Mecánica de los Medios Continuos y Teoría de Estructuras - Departament de Mecànica dels Medis Continus i Teoria d'Estructures | es_ES |
dc.description.bibliographicCitation | Gadea Borrell, JM.; Juliá Sanchis, E.; Segura Alcaraz, JG.; Montava-Belda, I. (2020). Sustainable sound absorbers from fruit stones waste. Applied Acoustics. 161:1-9. https://doi.org/10.1016/j.apacoust.2019.107174 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.apacoust.2019.107174 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 9 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 161 | es_ES |
dc.relation.pasarela | S\406943 | es_ES |
dc.description.references | Asdrubali, F., Schiavoni, S., & Horoshenkov, K. V. (2012). A Review of Sustainable Materials for Acoustic Applications. Building Acoustics, 19(4), 283-311. doi:10.1260/1351-010x.19.4.283 | es_ES |
dc.description.references | Panyakaew, S., & Fotios, S. (2011). New thermal insulation boards made from coconut husk and bagasse. Energy and Buildings, 43(7), 1732-1739. doi:10.1016/j.enbuild.2011.03.015 | es_ES |
dc.description.references | Zach, J., Hroudová, J., Brožovský, J., Krejza, Z., & Gailius, A. (2013). Development of Thermal Insulating Materials on Natural Base for Thermal Insulation Systems. Procedia Engineering, 57, 1288-1294. doi:10.1016/j.proeng.2013.04.162 | es_ES |
dc.description.references | Barreca, F., & Fichera, C. R. (2013). Use of olive stone as an additive in cement lime mortar to improve thermal insulation. Energy and Buildings, 62, 507-513. doi:10.1016/j.enbuild.2013.03.040 | es_ES |
dc.description.references | Patnaik, A., Mvubu, M., Muniyasamy, S., Botha, A., & Anandjiwala, R. D. (2015). Thermal and sound insulation materials from waste wool and recycled polyester fibers and their biodegradation studies. Energy and Buildings, 92, 161-169. doi:10.1016/j.enbuild.2015.01.056 | es_ES |
dc.description.references | Buratti, C., Belloni, E., Lascaro, E., Lopez, G. A., & Ricciardi, P. (2016). Sustainable Panels with Recycled Materials for Building Applications: Environmental and Acoustic Characterization. Energy Procedia, 101, 972-979. doi:10.1016/j.egypro.2016.11.123 | es_ES |
dc.description.references | Faustino, J., Pereira, L., Soares, S., Cruz, D., Paiva, A., Varum, H., … Pinto, J. (2012). Impact sound insulation technique using corn cob particleboard. Construction and Building Materials, 37, 153-159. doi:10.1016/j.conbuildmat.2012.07.064 | es_ES |
dc.description.references | Pelletier, M. G., Holt, G. A., Wanjura, J. D., Bayer, E., & McIntyre, G. (2013). An evaluation study of mycelium based acoustic absorbers grown on agricultural by-product substrates. Industrial Crops and Products, 51, 480-485. doi:10.1016/j.indcrop.2013.09.008 | es_ES |
dc.description.references | Pelletier, M. G., Holt, G. A., Wanjura, J. D., Lara, A. J., Tapia-Carillo, A., McIntyre, G., & Bayer, E. (2017). An evaluation study of pressure-compressed acoustic absorbers grown on agricultural by-products. Industrial Crops and Products, 95, 342-347. doi:10.1016/j.indcrop.2016.10.042 | es_ES |
dc.description.references | Ying, L.Z., Putra, A., Nor, M.J.M., Muhammad, N., 2016. Sound absorption of multilayer natural coir and Kenaf fibers. In: 23rd International Congress on Sound and Vibration. | es_ES |
dc.description.references | Glé, P., Gourdon, E., & Arnaud, L. (2012). Modelling of the acoustical properties of hemp particles. Construction and Building Materials, 37, 801-811. doi:10.1016/j.conbuildmat.2012.06.008 | es_ES |
dc.description.references | Zulkifli. (2010). Noise Control Using Coconut Coir Fiber Sound Absorber with Porous Layer Backing and Perforated Panel. American Journal of Applied Sciences, 7(2), 260-264. doi:10.3844/ajassp.2010.260.264 | es_ES |
dc.description.references | Zulkifli, R., Nor, M. J. M., Tahir, M. F. M., Ismail, A. R., & Nuawi, M. Z. (2008). Acoustic Properties of Multi-Layer Coir Fibres Sound Absorption Panel. Journal of Applied Sciences, 8(20), 3709-3714. doi:10.3923/jas.2008.3709.3714 | es_ES |
dc.description.references | Del Rey, R., Uris, A., Alba, J., & Candelas, P. (2017). Characterization of Sheep Wool as a Sustainable Material for Acoustic Applications. Materials, 10(11), 1277. doi:10.3390/ma10111277 | es_ES |
dc.description.references | Martellotta, F., Cannavale, A., De Matteis, V., & Ayr, U. (2018). Sustainable sound absorbers obtained from olive pruning wastes and chitosan binder. Applied Acoustics, 141, 71-78. doi:10.1016/j.apacoust.2018.06.022 | es_ES |
dc.description.references | Bartocci, P., D’Amico, M., Moriconi, N., Bidini, G., & Fantozzi, F. (2015). Pyrolysis of Olive Stone for Energy Purposes. Energy Procedia, 82, 374-380. doi:10.1016/j.egypro.2015.11.808 | es_ES |
dc.description.references | Martínez, M. L., Torres, M. M., Guzmán, C. A., & Maestri, D. M. (2006). Preparation and characteristics of activated carbon from olive stones and walnut shells. Industrial Crops and Products, 23(1), 23-28. doi:10.1016/j.indcrop.2005.03.001 | es_ES |
dc.description.references | Lussier, M. G., Shull, J. C., & Miller, D. J. (1994). Activated carbon from cherry stones. Carbon, 32(8), 1493-1498. doi:10.1016/0008-6223(94)90144-9 | es_ES |
dc.description.references | Djilani, C., Zaghdoudi, R., Djazi, F., Bouchekima, B., Lallam, A., Modarressi, A., & Rogalski, M. (2015). Adsorption of dyes on activated carbon prepared from apricot stones and commercial activated carbon. Journal of the Taiwan Institute of Chemical Engineers, 53, 112-121. doi:10.1016/j.jtice.2015.02.025 | es_ES |
dc.description.references | Kuczmarski, M.A., Johnston, J.C., 2011. Acoustic Absorption in Porous Materials. Nasa/Tm-2011-216995. | es_ES |
dc.description.references | Attenborough, K. (1982). Acoustical characteristics of porous materials. Physics Reports, 82(3), 179-227. doi:10.1016/0370-1573(82)90131-4 | es_ES |
dc.description.references | Tang, X., & Yan, X. (2017). Acoustic energy absorption properties of fibrous materials: A review. Composites Part A: Applied Science and Manufacturing, 101, 360-380. doi:10.1016/j.compositesa.2017.07.002 | es_ES |
dc.description.references | International Organization For Standardization, 2001. Acoustics - Determination of sound absorption coefficient and impedance in impedance tubes - Part 1 - Method using standing wave ratio.pdf. Int. Stand. | es_ES |
dc.description.references | Standard, B., 2001. Acoustics-determination of sound absorption coefficient and impedance in impedance tubes—part 2: transfer-function method. BS EN ISO. | es_ES |
dc.description.references | Allard, J., & Champoux, Y. (1992). New empirical equations for sound propagation in rigid frame fibrous materials. The Journal of the Acoustical Society of America, 91(6), 3346-3353. doi:10.1121/1.402824 | es_ES |
dc.description.references | Allard, J. F., Castagnede, B., Henry, M., & Lauriks, W. (1994). Evaluation of tortuosity in acoustic porous materials saturated by air. Review of Scientific Instruments, 65(3), 754-755. doi:10.1063/1.1145097 | es_ES |
dc.description.references | Qunli, W. (1988). Empirical relations between acoustical properties and flow resistivity of porous plastic open-cell foam. Applied Acoustics, 25(3), 141-148. doi:10.1016/0003-682x(88)90090-4 | es_ES |
dc.description.references | Oliva, D., & Hongisto, V. (2013). Sound absorption of porous materials – Accuracy of prediction methods. Applied Acoustics, 74(12), 1473-1479. doi:10.1016/j.apacoust.2013.06.004 | es_ES |