Mostrar el registro sencillo del ítem
dc.contributor.author | Soler Fernández, David![]() |
es_ES |
dc.contributor.author | Salandin, Andrea![]() |
es_ES |
dc.contributor.author | Bevivino, Michele![]() |
es_ES |
dc.date.accessioned | 2021-04-17T03:32:49Z | |
dc.date.available | 2021-04-17T03:32:49Z | |
dc.date.issued | 2020-06-15 | es_ES |
dc.identifier.issn | 0360-1323 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165286 | |
dc.description.abstract | [EN] Buildings are responsible for about 36% of the CO2 emissions in Europe but there is a significant potential to reduce these emissions. This paper deals with the embodied CO2 emissions of the opaque part of a facade, which include the life cycle of any material used in its construction: excavation, processing, construction, operation, maintenance, demolition and waste or recycling. With the aim of minimizing such embodied CO2 emissions, an Integer Linear Programming problem is presented, in which CO2 emissions are minimized depending on other parameters involved in the construction of the facade, like the maximal thermal transmittance allowed by current legislation, thickness of the wall, budget, availability of materials for the different layers of the wall, etc. The paper also shows a case study based on a constructive solution for the opaque part of the envelope defined by up to six layers, with more than 1.1 million possible combinations. This case study considers seventy scenarios depending on maximal allowed thermal transmittances and thickness intervals for five different technologies applied to the structural element of the wall. Results show that an adequate selection of materials can reduce the embodied CO2 emissions of the opaque part of the envelope up to 78.5% for similar values of transmittance and thickness. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Elsevier | es_ES |
dc.relation.ispartof | Building and Environment | es_ES |
dc.rights | Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) | es_ES |
dc.subject | Embodied CO2 emissions | es_ES |
dc.subject | Thermal transmittance | es_ES |
dc.subject | Façade | es_ES |
dc.subject | Integer linear programming | es_ES |
dc.subject | Minimization | es_ES |
dc.subject.classification | MATEMATICA APLICADA | es_ES |
dc.subject.classification | FISICA APLICADA | es_ES |
dc.title | Using integer Linear Programming to minimize the embodied CO2 emissions of the opaque part of a façade | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1016/j.buildenv.2020.106883 | es_ES |
dc.rights.accessRights | Abierto | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada | es_ES |
dc.description.bibliographicCitation | Soler Fernández, D.; Salandin, A.; Bevivino, M. (2020). Using integer Linear Programming to minimize the embodied CO2 emissions of the opaque part of a façade. Building and Environment. 177:1-11. https://doi.org/10.1016/j.buildenv.2020.106883 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1016/j.buildenv.2020.106883 | es_ES |
dc.description.upvformatpinicio | 1 | es_ES |
dc.description.upvformatpfin | 11 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 177 | es_ES |
dc.relation.pasarela | S\409314 | es_ES |
dc.description.references | Huang, P.-J., Huang, S.-L., & Marcotullio, P. J. (2019). Relationships between CO2 emissions and embodied energy in building construction: A historical analysis of Taipei. Building and Environment, 155, 360-375. doi:10.1016/j.buildenv.2019.03.059 | es_ES |
dc.description.references | Lolli, N., Fufa, S. M., & Inman, M. (2017). A Parametric Tool for the Assessment of Operational Energy Use, Embodied Energy and Embodied Material Emissions in Building. Energy Procedia, 111, 21-30. doi:10.1016/j.egypro.2017.03.004 | es_ES |
dc.description.references | Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244-248. doi:10.1016/j.rser.2015.01.043 | es_ES |
dc.description.references | Robati, M., Daly, D., & Kokogiannakis, G. (2019). A method of uncertainty analysis for whole-life embodied carbon emissions (CO2-e) of building materials of a net-zero energy building in Australia. Journal of Cleaner Production, 225, 541-553. doi:10.1016/j.jclepro.2019.03.339 | es_ES |
dc.description.references | Chastas, P., Theodosiou, T., Kontoleon, K. J., & Bikas, D. (2018). Normalising and assessing carbon emissions in the building sector: A review on the embodied CO 2 emissions of residential buildings. Building and Environment, 130, 212-226. doi:10.1016/j.buildenv.2017.12.032 | es_ES |
dc.description.references | Surahman, U., Higashi, O., & Kubota, T. (2015). Evaluation of current material stock and future demolition waste for urban residential buildings in Jakarta and Bandung, Indonesia: embodied energy and CO2 emission analysis. Journal of Material Cycles and Waste Management, 19(2), 657-675. doi:10.1007/s10163-015-0460-1 | es_ES |
dc.description.references | Brütting, J., Vandervaeren, C., Senatore, G., De Temmerman, N., & Fivet, C. (2020). Environmental impact minimization of reticular structures made of reused and new elements through Life Cycle Assessment and Mixed-Integer Linear Programming. Energy and Buildings, 215, 109827. doi:10.1016/j.enbuild.2020.109827 | es_ES |
dc.description.references | Taffese, W. Z., & Abegaz, K. A. (2019). Embodied Energy and CO2 Emissions of Widely Used Building Materials: The Ethiopian Context. Buildings, 9(6), 136. doi:10.3390/buildings9060136 | es_ES |
dc.description.references | Sicignano, E., Di Ruocco, G., & Melella, R. (2019). Mitigation Strategies for Reduction of Embodied Energy and Carbon, in the Construction Systems of Contemporary Quality Architecture. Sustainability, 11(14), 3806. doi:10.3390/su11143806 | es_ES |
dc.description.references | Mehrjerdi, H., & Rakhshani, E. (2019). Optimal operation of hybrid electrical and thermal energy storage systems under uncertain loading condition. Applied Thermal Engineering, 160, 114094. doi:10.1016/j.applthermaleng.2019.114094 | es_ES |
dc.description.references | Eshraghi, A., Salehi, G., Heibati, S., & Lari, K. (2019). Developing operation of combined cooling, heat, and power system based on energy hub in a micro-energy grid: The application of energy storages. Energy & Environment, 30(8), 1356-1379. doi:10.1177/0958305x19846577 | es_ES |
dc.description.references | Wang, D., Wu, R., Li, X., Lai, C. S., Wu, X., Wei, J., … Lai, L. L. (2019). Two-stage optimal scheduling of air conditioning resources with high photovoltaic penetrations. Journal of Cleaner Production, 241, 118407. doi:10.1016/j.jclepro.2019.118407 | es_ES |
dc.description.references | Zhang, Y., Campana, P. E., Lundblad, A., Zheng, W., & Yan, J. (2019). Planning and operation of an integrated energy system in a Swedish building. Energy Conversion and Management, 199, 111920. doi:10.1016/j.enconman.2019.111920 | es_ES |
dc.description.references | Bojic, M., & Trifunovic, N. (2000). Linear programming optimization of heat distribution in a district-heating system by valve adjustments and substation retrofit. Building and Environment, 35(2), 151-159. doi:10.1016/s0360-1323(99)00013-x | es_ES |
dc.description.references | Privitera, G., Day, A. R., Dhesi, G., & Long, D. (2011). Optimising the installation costs of renewable energy technologies in buildings: A Linear Programming approach. Energy and Buildings, 43(4), 838-843. doi:10.1016/j.enbuild.2010.12.003 | es_ES |
dc.description.references | Lindberg, K. B., Doorman, G., Fischer, D., Korpås, M., Ånestad, A., & Sartori, I. (2016). Methodology for optimal energy system design of Zero Energy Buildings using mixed-integer linear programming. Energy and Buildings, 127, 194-205. doi:10.1016/j.enbuild.2016.05.039 | es_ES |
dc.description.references | Ogunjuyigbe, A. S. O., Ayodele, T. R., & Oladimeji, O. E. (2016). Management of loads in residential buildings installed with PV system under intermittent solar irradiation using mixed integer linear programming. Energy and Buildings, 130, 253-271. doi:10.1016/j.enbuild.2016.08.042 | es_ES |
dc.subject.ods | 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles | es_ES |