- -

Using integer Linear Programming to minimize the embodied CO2 emissions of the opaque part of a façade

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Using integer Linear Programming to minimize the embodied CO2 emissions of the opaque part of a façade

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Soler Fernández, David es_ES
dc.contributor.author Salandin, Andrea es_ES
dc.contributor.author Bevivino, Michele es_ES
dc.date.accessioned 2021-04-17T03:32:49Z
dc.date.available 2021-04-17T03:32:49Z
dc.date.issued 2020-06-15 es_ES
dc.identifier.issn 0360-1323 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165286
dc.description.abstract [EN] Buildings are responsible for about 36% of the CO2 emissions in Europe but there is a significant potential to reduce these emissions. This paper deals with the embodied CO2 emissions of the opaque part of a facade, which include the life cycle of any material used in its construction: excavation, processing, construction, operation, maintenance, demolition and waste or recycling. With the aim of minimizing such embodied CO2 emissions, an Integer Linear Programming problem is presented, in which CO2 emissions are minimized depending on other parameters involved in the construction of the facade, like the maximal thermal transmittance allowed by current legislation, thickness of the wall, budget, availability of materials for the different layers of the wall, etc. The paper also shows a case study based on a constructive solution for the opaque part of the envelope defined by up to six layers, with more than 1.1 million possible combinations. This case study considers seventy scenarios depending on maximal allowed thermal transmittances and thickness intervals for five different technologies applied to the structural element of the wall. Results show that an adequate selection of materials can reduce the embodied CO2 emissions of the opaque part of the envelope up to 78.5% for similar values of transmittance and thickness. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Building and Environment es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Embodied CO2 emissions es_ES
dc.subject Thermal transmittance es_ES
dc.subject Façade es_ES
dc.subject Integer linear programming es_ES
dc.subject Minimization es_ES
dc.subject.classification MATEMATICA APLICADA es_ES
dc.subject.classification FISICA APLICADA es_ES
dc.title Using integer Linear Programming to minimize the embodied CO2 emissions of the opaque part of a façade es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.buildenv.2020.106883 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Física Aplicada - Departament de Física Aplicada es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada es_ES
dc.description.bibliographicCitation Soler Fernández, D.; Salandin, A.; Bevivino, M. (2020). Using integer Linear Programming to minimize the embodied CO2 emissions of the opaque part of a façade. Building and Environment. 177:1-11. https://doi.org/10.1016/j.buildenv.2020.106883 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.buildenv.2020.106883 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 11 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 177 es_ES
dc.relation.pasarela S\409314 es_ES
dc.description.references Huang, P.-J., Huang, S.-L., & Marcotullio, P. J. (2019). Relationships between CO2 emissions and embodied energy in building construction: A historical analysis of Taipei. Building and Environment, 155, 360-375. doi:10.1016/j.buildenv.2019.03.059 es_ES
dc.description.references Lolli, N., Fufa, S. M., & Inman, M. (2017). A Parametric Tool for the Assessment of Operational Energy Use, Embodied Energy and Embodied Material Emissions in Building. Energy Procedia, 111, 21-30. doi:10.1016/j.egypro.2017.03.004 es_ES
dc.description.references Abd Rashid, A. F., & Yusoff, S. (2015). A review of life cycle assessment method for building industry. Renewable and Sustainable Energy Reviews, 45, 244-248. doi:10.1016/j.rser.2015.01.043 es_ES
dc.description.references Robati, M., Daly, D., & Kokogiannakis, G. (2019). A method of uncertainty analysis for whole-life embodied carbon emissions (CO2-e) of building materials of a net-zero energy building in Australia. Journal of Cleaner Production, 225, 541-553. doi:10.1016/j.jclepro.2019.03.339 es_ES
dc.description.references Chastas, P., Theodosiou, T., Kontoleon, K. J., & Bikas, D. (2018). Normalising and assessing carbon emissions in the building sector: A review on the embodied CO 2 emissions of residential buildings. Building and Environment, 130, 212-226. doi:10.1016/j.buildenv.2017.12.032 es_ES
dc.description.references Surahman, U., Higashi, O., & Kubota, T. (2015). Evaluation of current material stock and future demolition waste for urban residential buildings in Jakarta and Bandung, Indonesia: embodied energy and CO2 emission analysis. Journal of Material Cycles and Waste Management, 19(2), 657-675. doi:10.1007/s10163-015-0460-1 es_ES
dc.description.references Brütting, J., Vandervaeren, C., Senatore, G., De Temmerman, N., & Fivet, C. (2020). Environmental impact minimization of reticular structures made of reused and new elements through Life Cycle Assessment and Mixed-Integer Linear Programming. Energy and Buildings, 215, 109827. doi:10.1016/j.enbuild.2020.109827 es_ES
dc.description.references Taffese, W. Z., & Abegaz, K. A. (2019). Embodied Energy and CO2 Emissions of Widely Used Building Materials: The Ethiopian Context. Buildings, 9(6), 136. doi:10.3390/buildings9060136 es_ES
dc.description.references Sicignano, E., Di Ruocco, G., & Melella, R. (2019). Mitigation Strategies for Reduction of Embodied Energy and Carbon, in the Construction Systems of Contemporary Quality Architecture. Sustainability, 11(14), 3806. doi:10.3390/su11143806 es_ES
dc.description.references Mehrjerdi, H., & Rakhshani, E. (2019). Optimal operation of hybrid electrical and thermal energy storage systems under uncertain loading condition. Applied Thermal Engineering, 160, 114094. doi:10.1016/j.applthermaleng.2019.114094 es_ES
dc.description.references Eshraghi, A., Salehi, G., Heibati, S., & Lari, K. (2019). Developing operation of combined cooling, heat, and power system based on energy hub in a micro-energy grid: The application of energy storages. Energy & Environment, 30(8), 1356-1379. doi:10.1177/0958305x19846577 es_ES
dc.description.references Wang, D., Wu, R., Li, X., Lai, C. S., Wu, X., Wei, J., … Lai, L. L. (2019). Two-stage optimal scheduling of air conditioning resources with high photovoltaic penetrations. Journal of Cleaner Production, 241, 118407. doi:10.1016/j.jclepro.2019.118407 es_ES
dc.description.references Zhang, Y., Campana, P. E., Lundblad, A., Zheng, W., & Yan, J. (2019). Planning and operation of an integrated energy system in a Swedish building. Energy Conversion and Management, 199, 111920. doi:10.1016/j.enconman.2019.111920 es_ES
dc.description.references Bojic, M., & Trifunovic, N. (2000). Linear programming optimization of heat distribution in a district-heating system by valve adjustments and substation retrofit. Building and Environment, 35(2), 151-159. doi:10.1016/s0360-1323(99)00013-x es_ES
dc.description.references Privitera, G., Day, A. R., Dhesi, G., & Long, D. (2011). Optimising the installation costs of renewable energy technologies in buildings: A Linear Programming approach. Energy and Buildings, 43(4), 838-843. doi:10.1016/j.enbuild.2010.12.003 es_ES
dc.description.references Lindberg, K. B., Doorman, G., Fischer, D., Korpås, M., Ånestad, A., & Sartori, I. (2016). Methodology for optimal energy system design of Zero Energy Buildings using mixed-integer linear programming. Energy and Buildings, 127, 194-205. doi:10.1016/j.enbuild.2016.05.039 es_ES
dc.description.references Ogunjuyigbe, A. S. O., Ayodele, T. R., & Oladimeji, O. E. (2016). Management of loads in residential buildings installed with PV system under intermittent solar irradiation using mixed integer linear programming. Energy and Buildings, 130, 253-271. doi:10.1016/j.enbuild.2016.08.042 es_ES
dc.subject.ods 11.- Conseguir que las ciudades y los asentamientos humanos sean inclusivos, seguros, resilientes y sostenibles es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem