Weckhuysen, B. M., & Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44(20), 7022-7024. doi:10.1039/c5cs90100f
Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150g
Rutkowska, M., Pacia, I., Basąg, S., Kowalczyk, A., Piwowarska, Z., Duda, M., … Chmielarz, L. (2017). Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH 3 -SCR and NH 3 -SCO processes. Microporous and Mesoporous Materials, 246, 193-206. doi:10.1016/j.micromeso.2017.03.017
[+]
Weckhuysen, B. M., & Yu, J. (2015). Recent advances in zeolite chemistry and catalysis. Chemical Society Reviews, 44(20), 7022-7024. doi:10.1039/c5cs90100f
Verboekend, D., & Pérez-Ramírez, J. (2011). Design of hierarchical zeolite catalysts by desilication. Catalysis Science & Technology, 1(6), 879. doi:10.1039/c1cy00150g
Rutkowska, M., Pacia, I., Basąg, S., Kowalczyk, A., Piwowarska, Z., Duda, M., … Chmielarz, L. (2017). Catalytic performance of commercial Cu-ZSM-5 zeolite modified by desilication in NH 3 -SCR and NH 3 -SCO processes. Microporous and Mesoporous Materials, 246, 193-206. doi:10.1016/j.micromeso.2017.03.017
Góra-Marek, K., Brylewska, K., Tarach, K. A., Rutkowska, M., Jabłońska, M., Choi, M., & Chmielarz, L. (2015). IR studies of Fe modified ZSM-5 zeolites of diverse mesopore topologies in the terms of their catalytic performance in NH3-SCR and NH3-SCO processes. Applied Catalysis B: Environmental, 179, 589-598. doi:10.1016/j.apcatb.2015.05.053
Macina, D., Piwowarska, Z., Góra-Marek, K., Tarach, K., Rutkowska, M., Girman, V., … Chmielarz, L. (2016). SBA-15 loaded with iron by various methods as catalyst for DeNOx process. Materials Research Bulletin, 78, 72-82. doi:10.1016/j.materresbull.2016.02.026
Rutkowska, M., Duda, M., Macina, D., Górecka, S., Dębek, R., Moreno, J. M., … Chmielarz, L. (2019). Mesoporous Beta zeolite functionalisation with FexCry oligocations; catalytic activity in the NH3SCO process. Microporous and Mesoporous Materials, 278, 1-13. doi:10.1016/j.micromeso.2018.11.003
Miller, J. T., Glusker, E., Peddi, R., Zheng, T., & Regalbuto, J. R. (1998). Catalysis Letters, 51(1/2), 15-22. doi:10.1023/a:1019072631175
Kowalczyk, A., Borcuch, A., Michalik, M., Rutkowska, M., Gil, B., Sojka, Z., … Chmielarz, L. (2017). MCM-41 modified with transition metals by template ion-exchange method as catalysts for selective catalytic oxidation of ammonia to dinitrogen. Microporous and Mesoporous Materials, 240, 9-21. doi:10.1016/j.micromeso.2016.11.002
Chmielarz, L., & Jabłońska, M. (2015). Advances in selective catalytic oxidation of ammonia to dinitrogen: a review. RSC Advances, 5(54), 43408-43431. doi:10.1039/c5ra03218k
Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J., & Sing, K. S. W. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9-10), 1051-1069. doi:10.1515/pac-2014-1117
Qi, G., & Yang, R. T. (2005). Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts. Applied Catalysis A: General, 287(1), 25-33. doi:10.1016/j.apcata.2005.03.006
[-]