Mostrar el registro sencillo del ítem
dc.contributor.author | García-Martínez, M.M. | es_ES |
dc.contributor.author | Campayo, A. | es_ES |
dc.contributor.author | Carot Sierra, José Miguel | es_ES |
dc.contributor.author | Serrano de la Hoz, K. | es_ES |
dc.contributor.author | Salinas, M.R. | es_ES |
dc.contributor.author | Alonso, G.L. | es_ES |
dc.date.accessioned | 2021-04-17T03:33:39Z | |
dc.date.available | 2021-04-17T03:33:39Z | |
dc.date.issued | 2020-10 | es_ES |
dc.identifier.issn | 1322-7130 | es_ES |
dc.identifier.uri | http://hdl.handle.net/10251/165304 | |
dc.description | This is the peer reviewed version of the following article: [FULL CITE], which has been published in final form at [Link to final article using the DOI]. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. | es_ES |
dc.description.abstract | [EN] Background and Aims Ozonated water has been used in vineyards to reduce the use of pesticides because of its presumed efficacy in the control of fungal diseases and the absence of residues. The aim of this study was to evaluate the effect of ozonated water treatments on the composition of grapes. Methods and Results Ozonated water was applied to grapevines ofVitis viniferacv. Cabernet Sauvignon throughout the season. Several application strategies were used, namely, spraying, irrigation, irrigation combined with spraying, endotherapy and endotherapy combined with spraying. The effect of the treatments varied with the season and also with the application strategy. Conclusions The combination of irrigation and spraying of ozonated water produced a significant increase in the colour of grapes and an improved phenolic concentration and aromatic potential. Endotherapy and irrigation had a negative effect on grape composition; however, grape composition improved significantly when these strategies were combined with spraying. Significance of the Study Ozonated water treatments in vineyards can improve the colour, phenolic concentration and aromatic potential of grapes while at the same time reducing the use of phytochemicals. | es_ES |
dc.description.sponsorship | The authors acknowledge the support of Project INNTER ECOSANVID 2015 (FEDER-CDTI, EXP: 00093497/ITC20151026), financed by the Spanish companies DCOOPBACO, FINCA ANTIGUA, VIALCON and NUTRICONTROL of Spain. | es_ES |
dc.language | Inglés | es_ES |
dc.publisher | Blackwell Publishing | es_ES |
dc.relation.ispartof | Australian Journal of Grape and Wine Research | es_ES |
dc.rights | Reserva de todos los derechos | es_ES |
dc.subject | Colour | es_ES |
dc.subject | Endotherapy | es_ES |
dc.subject | Irrigation | es_ES |
dc.subject | Phenolic substances | es_ES |
dc.subject | Spraying | es_ES |
dc.subject | Volatile | es_ES |
dc.subject.classification | ESTADISTICA E INVESTIGACION OPERATIVA | es_ES |
dc.title | Oenological characteristics of Vitis vinifera L. Cabernet Sauvignon grapes from vineyards treated with ozonated water | es_ES |
dc.type | Artículo | es_ES |
dc.identifier.doi | 10.1111/ajgw.12454 | es_ES |
dc.relation.projectID | info:eu-repo/grantAgreement/CDTI//00093497%2FITC20151026/ | es_ES |
dc.rights.accessRights | Cerrado | es_ES |
dc.contributor.affiliation | Universitat Politècnica de València. Departamento de Estadística e Investigación Operativa Aplicadas y Calidad - Departament d'Estadística i Investigació Operativa Aplicades i Qualitat | es_ES |
dc.description.bibliographicCitation | García-Martínez, M.; Campayo, A.; Carot Sierra, JM.; Serrano De La Hoz, K.; Salinas, M.; Alonso, G. (2020). Oenological characteristics of Vitis vinifera L. Cabernet Sauvignon grapes from vineyards treated with ozonated water. Australian Journal of Grape and Wine Research. 26(4):388-398. https://doi.org/10.1111/ajgw.12454 | es_ES |
dc.description.accrualMethod | S | es_ES |
dc.relation.publisherversion | https://doi.org/10.1111/ajgw.12454 | es_ES |
dc.description.upvformatpinicio | 388 | es_ES |
dc.description.upvformatpfin | 398 | es_ES |
dc.type.version | info:eu-repo/semantics/publishedVersion | es_ES |
dc.description.volume | 26 | es_ES |
dc.description.issue | 4 | es_ES |
dc.relation.pasarela | S\428880 | es_ES |
dc.contributor.funder | European Regional Development Fund | es_ES |
dc.contributor.funder | Centro para el Desarrollo Tecnológico Industrial | es_ES |
dc.description.references | Alem, H., Rigou, P., Schneider, R., Ojeda, H., & Torregrosa, L. (2018). Impact of agronomic practices on grape aroma composition: a review. Journal of the Science of Food and Agriculture, 99(3), 975-985. doi:10.1002/jsfa.9327 | es_ES |
dc.description.references | Asproudi, A., Ferrandino, A., Bonello, F., Vaudano, E., Pollon, M., & Petrozziello, M. (2018). Key norisoprenoid compounds in wines from early-harvested grapes in view of climate change. Food Chemistry, 268, 143-152. doi:10.1016/j.foodchem.2018.06.069 | es_ES |
dc.description.references | Bellincontro, A., Catelli, C., Cotarella, R., & Mencarelli, F. (2017). Postharvest ozone fumigation of Petit Verdot grapes to prevent the use of sulfites and to increase anthocyanin in wine. Australian Journal of Grape and Wine Research, 23(2), 200-206. doi:10.1111/ajgw.12257 | es_ES |
dc.description.references | Bernardo, S., Dinis, L.-T., Machado, N., & Moutinho-Pereira, J. (2018). Grapevine abiotic stress assessment and search for sustainable adaptation strategies in Mediterranean-like climates. A review. Agronomy for Sustainable Development, 38(6). doi:10.1007/s13593-018-0544-0 | es_ES |
dc.description.references | Cabrita, M. J., Freitas, A. M. C., Laureano, O., & Stefano, R. D. (2006). Glycosidic aroma compounds of some Portuguese grape cultivars. Journal of the Science of Food and Agriculture, 86(6), 922-931. doi:10.1002/jsfa.2439 | es_ES |
dc.description.references | Campayo, A., Serrano de la Hoz, K., García-Martínez, M. M., Sánchez-Martínez, J. F., Salinas, M. R., & Alonso, G. L. (2019). Spraying ozonated water on Bobal grapevines: Effect on grape quality. Food Research International, 125, 108540. doi:10.1016/j.foodres.2019.108540 | es_ES |
dc.description.references | Carbone, K., & Mencarelli, F. (2015). Influence of Short-Term Postharvest Ozone Treatments in Nitrogen or Air Atmosphere on the Metabolic Response of White Wine Grapes. Food and Bioprocess Technology, 8(8), 1739-1749. doi:10.1007/s11947-015-1515-y | es_ES |
dc.description.references | Culleré, L., Escudero, A., Campo, E., Cacho, J., & Ferreira, V. (2009). Multidimensional gas chromatography–mass spectrometry determination of 3-alkyl-2-methoxypyrazines in wine and must. A comparison of solid-phase extraction and headspace solid-phase extraction methods. Journal of Chromatography A, 1216(18), 4040-4045. doi:10.1016/j.chroma.2009.02.072 | es_ES |
dc.description.references | Czekalski, N., Imminger, S., Salhi, E., Veljkovic, M., Kleffel, K., Drissner, D., … von Gunten, U. (2016). Inactivation of Antibiotic Resistant Bacteria and Resistance Genes by Ozone: From Laboratory Experiments to Full-Scale Wastewater Treatment. Environmental Science & Technology, 50(21), 11862-11871. doi:10.1021/acs.est.6b02640 | es_ES |
dc.description.references | DeSanctis, F., Ceccantoni, B., Bellincontro, A., Botondi, R., Mencarelli, F., D’Onofrio, C., … Catelli, C. (2015). OZONE FUMIGATION POSTHARVEST TREATMENT FOR THE QUALITY OF WINE GRAPE. Acta Horticulturae, (1071), 795-800. doi:10.17660/actahortic.2015.1071.105 | es_ES |
dc.description.references | Garde-Cerdán, T., Martínez-Gil, A. M., Lorenzo, C., Lara, J. F., Pardo, F., & Salinas, M. R. (2011). Implications of nitrogen compounds during alcoholic fermentation from some grape varieties at different maturation stages and cultivation systems. Food Chemistry, 124(1), 106-116. doi:10.1016/j.foodchem.2010.05.112 | es_ES |
dc.description.references | Gómez-Míguez, M., González-Manzano, S., Escribano-Bailón, M. T., Heredia, F. J., & Santos-Buelga, C. (2006). Influence of Different Phenolic Copigments on the Color of Malvidin 3-Glucoside. Journal of Agricultural and Food Chemistry, 54(15), 5422-5429. doi:10.1021/jf0604586 | es_ES |
dc.description.references | Hjelmeland, A. K., & Ebeler, S. E. (2014). Glycosidically Bound Volatile Aroma Compounds in Grapes and Wine: A Review. American Journal of Enology and Viticulture, 66(1), 1-11. doi:10.5344/ajev.2014.14104 | es_ES |
dc.description.references | KALUA, C. M., & BOSS, P. K. (2010). Comparison of major volatile compounds from Riesling and Cabernet Sauvignon grapes (Vitis vinifera L.) from fruitset to harvest. Australian Journal of Grape and Wine Research, 16(2), 337-348. doi:10.1111/j.1755-0238.2010.00096.x | es_ES |
dc.description.references | Khadre, M. A., Yousef, A. E., & Kim, J.-G. (2001). Microbiological Aspects of Ozone Applications in Food: A Review. Journal of Food Science, 66(9), 1242-1252. doi:10.1111/j.1365-2621.2001.tb15196.x | es_ES |
dc.description.references | Koch, A., Ebeler, S. E., Williams, L. E., & Matthews, M. A. (2012). Fruit ripening in Vitis vinifera: light intensity before and not during ripening determines the concentration of 2-methoxy-3-isobutylpyrazine in Cabernet Sauvignon berries. Physiologia Plantarum, 145(2), 275-285. doi:10.1111/j.1399-3054.2012.01572.x | es_ES |
dc.description.references | Martínez-Gil, A. M., Garde-Cerdán, T., Martínez, L., Alonso, G. L., & Salinas, M. R. (2011). Effect of Oak Extract Application to Verdejo Grapevines on Grape and Wine Aroma. Journal of Agricultural and Food Chemistry, 59(7), 3253-3263. doi:10.1021/jf104178c | es_ES |
dc.description.references | Matsui, K. (2006). Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Current Opinion in Plant Biology, 9(3), 274-280. doi:10.1016/j.pbi.2006.03.002 | es_ES |
dc.description.references | Mazza, G., & Francis, F. J. (1995). Anthocyanins in grapes and grape products. Critical Reviews in Food Science and Nutrition, 35(4), 341-371. doi:10.1080/10408399509527704 | es_ES |
dc.description.references | Mehlhorn, H., Tabner, B. J., & Wellburn, A. R. (1990). Electron spin resonance evidence for the formation of free radicals in plants exposed to ozone. Physiologia Plantarum, 79(2), 377-383. doi:10.1111/j.1399-3054.1990.tb06756.x | es_ES |
dc.description.references | Mencarelli, F., & Bellincontro, A. (2018). Recent advances in postharvest technology of the wine grape to improve the wine aroma. Journal of the Science of Food and Agriculture, 100(14), 5046-5055. doi:10.1002/jsfa.8910 | es_ES |
dc.description.references | Modesti, M., Baccelloni, S., Brizzolara, S., Aleandri, M. P., Bellincontro, A., Mencarelli, F., & Tonutti, P. (2019). Effects of treatments with ozonated water in the vineyard (cv Vermentino) on microbial population and fruit quality parameters. BIO Web of Conferences, 13, 04011. doi:10.1051/bioconf/20191304011 | es_ES |
dc.description.references | Mira de Orduña, R. (2010). Climate change associated effects on grape and wine quality and production. Food Research International, 43(7), 1844-1855. doi:10.1016/j.foodres.2010.05.001 | es_ES |
dc.description.references | Orta de Velásquez, M. T., Rojas-Valencia, M. N., & Ayala, A. (2008). Wastewater Disinfection Using Ozone to Remove Free-Living, Highly Pathogenic Bacteria and Amoebae. Ozone: Science & Engineering, 30(5), 367-375. doi:10.1080/01919510802333738 | es_ES |
dc.description.references | Paissoni, M. A., Río Segade, S., Giacosa, S., Torchio, F., Cravero, F., Englezos, V., … Rolle, L. (2017). Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo ( Vitis vinifera L.). Food Research International, 98, 68-78. doi:10.1016/j.foodres.2016.11.013 | es_ES |
dc.description.references | Pardo-García, A. I., Martínez-Gil, A. M., Cadahía, E., Pardo, F., Alonso, G. L., & Salinas, M. R. (2014). Oak extract application to grapevines as a plant biostimulant to increase wine polyphenols. Food Research International, 55, 150-160. doi:10.1016/j.foodres.2013.11.004 | es_ES |
dc.description.references | Pell, E. J., & Dann, M. S. (1991). Multiple Stress-Induced Foliar Senescence and Implications for Whole-Plant Longevity. Response of Plants to Multiple Stresses, 189-204. doi:10.1016/b978-0-08-092483-0.50014-1 | es_ES |
dc.description.references | Petriccione, M., Pagano, L., Forniti, R., Zampella, L., Mastrobuoni, F., Scortichini, M., & Mencarelli, F. (2018). Postharvest treatment with chitosan affects the antioxidant metabolism and quality of wine grape during partial dehydration. Postharvest Biology and Technology, 137, 38-45. doi:10.1016/j.postharvbio.2017.11.010 | es_ES |
dc.description.references | Pierron, R. J. G., Pages, M., Couderc, C., Compant, S., Jacques, A., & Violleau, F. (2015). In vitro and in planta fungicide properties of ozonated water against the esca-associated fungus Phaeoacremonium aleophilum. Scientia Horticulturae, 189, 184-191. doi:10.1016/j.scienta.2015.03.038 | es_ES |
dc.description.references | Remondino, M., & Valdenassi, L. (2018). Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability, 10(12), 4783. doi:10.3390/su10124783 | es_ES |
dc.description.references | Río Segade, S., Paissoni, M. A., Giacosa, S., Bautista-Ortín, A. B., Gómez-Plaza, E., Gerbi, V., & Rolle, L. (2019). Winegrapes dehydration under ozone-enriched atmosphere: Influence on berry skin phenols release, cell wall composition and mechanical properties. Food Chemistry, 271, 673-684. doi:10.1016/j.foodchem.2018.07.218 | es_ES |
dc.description.references | Rosillo, L., Salinas, M. R., Garijo, J., & Alonso, G. L. (1999). Study of volatiles in grapes by dynamic headspace analysis. Journal of Chromatography A, 847(1-2), 155-159. doi:10.1016/s0021-9673(99)00036-9 | es_ES |
dc.description.references | Ryan, J.-M., & Revilla, E. (2003). Anthocyanin Composition of Cabernet Sauvignon and Tempranillo Grapes at Different Stages of Ripening. Journal of Agricultural and Food Chemistry, 51(11), 3372-3378. doi:10.1021/jf020849u | es_ES |
dc.description.references | Sala, C., Busto, O., Guasch, J., & Zamora, F. (2004). Influence of Vine Training and Sunlight Exposure on the 3-Alkyl-2-methoxypyrazines Content in Musts and Wines from the Vitis vinifera Variety Cabernet Sauvignon. Journal of Agricultural and Food Chemistry, 52(11), 3492-3497. doi:10.1021/jf049927z | es_ES |
dc.description.references | Salinas, M. R., de la Hoz, K. S., Zalacain, A., Lara, J. F., & Garde-Cerdán, T. (2012). Analysis of red grape glycosidic aroma precursors by glycosyl glucose quantification. Talanta, 89, 396-400. doi:10.1016/j.talanta.2011.12.050 | es_ES |
dc.description.references | Xie, S., Lei, Y., Wang, Y., Wang, X., Ren, R., & Zhang, Z. (2018). Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions. Plant Growth Regulation, 87(1), 83-92. doi:10.1007/s10725-018-0455-8 | es_ES |