- -

Metabarcoding and development of new Real-time specific assays reveal Phytophthora species diversity in Holm Oak forests in eastern Spain

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Metabarcoding and development of new Real-time specific assays reveal Phytophthora species diversity in Holm Oak forests in eastern Spain

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Català, Santiago es_ES
dc.contributor.author Berbegal Martinez, Monica es_ES
dc.contributor.author Pérez Sierra, Ana María es_ES
dc.contributor.author Abad Campos, Paloma es_ES
dc.date.accessioned 2021-04-17T03:33:47Z
dc.date.available 2021-04-17T03:33:47Z
dc.date.issued 2017-01 es_ES
dc.identifier.issn 0032-0862 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165308
dc.description.abstract [EN] The evergreen holm oaks (Quercus ilex subsp. ilex and Q. ilex subsp. ballota) are the most representative tree species in the Iberian peninsula and the main tree species in oak-rangeland ecosystems (dehesas). Oak decline in western, central and southern parts of Spain has been associated with root rot caused by Phytophthora cinnamomi for decades. However, Phytophthora species such as P. quercina and P. psychrophila have recently been found associated with Quercus decline in eastern Spain where calcareous soils are predominant. Soil and root samples from two Quercus forests presenting decline symptoms in two different geographical areas in eastern Spain (Carrascar de la Font Roja and Vallivana) were analysed by amplicon pyrosequencing. Metabarcoding analysis showed Phytophthora species diversity, and revealed that an uncultured Phytophthora taxon, named provisionally Phytophthora taxon ballota, was the predominant species in both areas. In addition, a real-time PCR assay, based on the pyrosequencing results, was developed for the detection of this uncultured Phytophthora taxon, and also for the detection of P. quercina. TaqMan assays were tested on soil and root samples, and on Phytophthora pure cultures. The new assays showed high specificity and were consistent with metabarcoding results. A new real-time PCR protocol is proposed to evaluate the implication of different Phytophthora spp. in oak decline in eastern Spain. es_ES
dc.description.sponsorship This research was supported by the Spanish Ministerio de Ciencia e Innovacion (project AGL2011-30438-C02-01). The authors thank the Direccion General del Medio Natural from Generalitat de la Comunitat Valenciana for their support during the surveys. They are indebted to Dr Josep Armengol (Universitat Politecnica de Valencia) for critical reading of the manuscript prior to submission. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Plant Pathology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biodiversity es_ES
dc.subject ITS1 rDNA es_ES
dc.subject MMediterranean es_ES
dc.subject Metabarcoding es_ES
dc.subject Phytophthora es_ES
dc.subject Quercus es_ES
dc.subject.classification BOTANICA es_ES
dc.subject.classification PRODUCCION VEGETAL es_ES
dc.title Metabarcoding and development of new Real-time specific assays reveal Phytophthora species diversity in Holm Oak forests in eastern Spain es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/ppa.12541 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MICINN//AGL2011-30438-C02-01/ES/APLICACION DE TECNICAS MOLECULARES PARA VALORAR LA IMPLICACION DE PHYTOPHTHORA SPP. EN EL DECAIMIENTO DE QUERCUS ILEX/ es_ES
dc.rights.accessRights Cerrado es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Agroforestal Mediterráneo - Institut Agroforestal Mediterrani es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ecosistemas Agroforestales - Departament d'Ecosistemes Agroforestals es_ES
dc.description.bibliographicCitation Català, S.; Berbegal Martinez, M.; Pérez Sierra, AM.; Abad Campos, P. (2017). Metabarcoding and development of new Real-time specific assays reveal Phytophthora species diversity in Holm Oak forests in eastern Spain. Plant Pathology. 66(1):115-123. https://doi.org/10.1111/ppa.12541 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/ppa.12541 es_ES
dc.description.upvformatpinicio 115 es_ES
dc.description.upvformatpfin 123 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 66 es_ES
dc.description.issue 1 es_ES
dc.relation.pasarela S\332204 es_ES
dc.contributor.funder Ministerio de Ciencia e Innovación es_ES
dc.description.references Agustí-Brisach, C., Mostert, L., & Armengol, J. (2013). Detection and quantification ofIlyonectriaspp. associated with black-foot disease of grapevine in nursery soils using multiplex nested PCR and quantitative PCR. Plant Pathology, 63(2), 316-322. doi:10.1111/ppa.12093 es_ES
dc.description.references Alaei, H., Baeyen, S., Maes, M., Höfte, M., & Heungens, K. (2009). Molecular detection of Puccinia horiana in Chrysanthemum x morifolium through conventional and real-time PCR. Journal of Microbiological Methods, 76(2), 136-145. doi:10.1016/j.mimet.2008.10.001 es_ES
dc.description.references Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389 es_ES
dc.description.references Avrova, A. O., Venter, E., Birch, P. R. ., & Whisson, S. C. (2003). Profiling and quantifying differential gene transcription in Phytophthora infestans prior to and during the early stages of potato infection. Fungal Genetics and Biology, 40(1), 4-14. doi:10.1016/s1087-1845(03)00063-x es_ES
dc.description.references Balci, Y., & Halmschlager, E. (2003). Incidence of Phytophthora species in oak forests in Austria and their possible involvement in oak decline. Forest Pathology, 33(3), 157-174. doi:10.1046/j.1439-0329.2003.00318.x es_ES
dc.description.references Balci, Y., & Halmschlager, E. (2003). Phytophthora species in oak ecosystems in Turkey and their association with declining oak trees. Plant Pathology, 52(6), 694-702. doi:10.1111/j.1365-3059.2003.00919.x es_ES
dc.description.references Bonants, P. J. M., van Gent-Pelzer, M. P. E., Hooftman, R., Cooke, D. E. L., Guy, D. C., & Duncan, J. M. (2004). A Combination of Baiting and Different PCR Formats, Including Measurement of Real-Time Quantitative Fluorescence, For the Detection of Phytophthora fragariae in Strawberry Plants. European Journal of Plant Pathology, 110(7), 689-702. doi:10.1023/b:ejpp.0000041551.26970.0e es_ES
dc.description.references BRASIER, C. M., ROBREDO, F., & FERRAZ, J. F. P. (1993). Evidence forPhytophthora cinnamomiinvolvement in Iberian oak decline. Plant Pathology, 42(1), 140-145. doi:10.1111/j.1365-3059.1993.tb01482.x es_ES
dc.description.references Burgess T Català S White D Hardy G 2014 Next Generation Sequencing reveals unexplored Phytophthora diversity in Australian soils Phytophthora http://www.iufro.org/de/science/divisions/division-7/70000/70200/70209/publications/ es_ES
dc.description.references Carevic, F. S., Fernández, M., Alejano, R., Vázquez-Piqué, J., Tapias, R., Corral, E., & Domingo, J. (2009). Plant water relations and edaphoclimatic conditions affecting acorn production in a holm oak (Quercus ilex L. ssp. ballota) open woodland. Agroforestry Systems, 78(3), 299-308. doi:10.1007/s10457-009-9245-7 es_ES
dc.description.references Català S Puértolas A Larregla S Pérez-Sierra A Abad-Campos P 2014a Fishing for Phytophthora 2.0 S Phytophthora http://www.iufro.org/de/science/divisions/division-7/70000/70200/70209/publications/ es_ES
dc.description.references Català S Pérez-Sierra A Rodríguez Padrón C de Siverio la Rosa F Abad-Campos P 2014b Discovering Phytophthora species in the laurel forest in Tenerife and La Gomera islands (Canary Islands, Spain) Phytophthora http://www.iufro.org/de/science/divisions/division-7/70000/70200/70209/publications/ es_ES
dc.description.references Català, S., Pérez-Sierra, A., & Abad-Campos, P. (2015). The Use of Genus-Specific Amplicon Pyrosequencing to Assess Phytophthora Species Diversity Using eDNA from Soil and Water in Northern Spain. PLOS ONE, 10(3), e0119311. doi:10.1371/journal.pone.0119311 es_ES
dc.description.references Coince, A., Caël, O., Bach, C., Lengellé, J., Cruaud, C., Gavory, F., … Buée, M. (2013). Below-ground fine-scale distribution and soil versus fine root detection of fungal and soil oomycete communities in a French beech forest. Fungal Ecology, 6(3), 223-235. doi:10.1016/j.funeco.2013.01.002 es_ES
dc.description.references Cooke, D. E. L., Drenth, A., Duncan, J. M., Wagels, G., & Brasier, C. M. (2000). A Molecular Phylogeny of Phytophthora and Related Oomycetes. Fungal Genetics and Biology, 30(1), 17-32. doi:10.1006/fgbi.2000.1202 es_ES
dc.description.references Corcobado, T., Vivas, M., Moreno, G., & Solla, A. (2014). Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. Forest Ecology and Management, 324, 72-80. doi:10.1016/j.foreco.2014.03.040 es_ES
dc.description.references Ioos, R., Laugustin, L., Rose, S., Tourvieille, J., & Tourvieille de Labrouhe, D. (2007). Development of a PCR test to detect the downy mildew causal agent Plasmopara halstedii in sunflower seeds. Plant Pathology, 56(2), 209-218. doi:10.1111/j.1365-3059.2006.01500.x es_ES
dc.description.references Ippolito, A., Schena, L., Nigro, F., Soleti ligorio, V., & Yaseen, T. (2004). Real-time detection of Phytophthora nicotianae and P. citrophthorain citrus roots and soil. European Journal of Plant Pathology, 110(8), 833-843. doi:10.1007/s10658-004-5571-9 es_ES
dc.description.references Jung, T., Cooke, D. E. L., Blaschke, H., Duncan, J. M., & Oßwald, W. (1999). Phytophthora quercina sp. nov., causing root rot of European oaks. Mycological Research, 103(7), 785-798. doi:10.1017/s0953756298007734 es_ES
dc.description.references Kang, M. J., Kim, M. H., Hwang, D. J., Cho, M. S., Seol, Y., Hahn, J. H., … Park, D. S. (2012). Quantitative in planta PCR assay for specific detection of Xanthomonas oryzae pv. oryzicola using putative membrane protein based primer set. Crop Protection, 40, 22-27. doi:10.1016/j.cropro.2012.04.014 es_ES
dc.description.references Lees, A. K., Sullivan, L., Lynott, J. S., & Cullen, D. W. (2012). Development of a quantitative real-time PCR assay for Phytophthora infestans and its applicability to leaf, tuber and soil samples. Plant Pathology, 61(5), 867-876. doi:10.1111/j.1365-3059.2011.02574.x es_ES
dc.description.references Lin, Y.-H., Su, C.-C., Chao, C.-P., Chen, C.-Y., Chang, C.-J., Huang, J.-W., & Chang, P.-F. L. (2012). A molecular diagnosis method using real-time PCR for quantification and detection of Fusarium oxysporum f. sp. cubense race 4. European Journal of Plant Pathology, 135(2), 395-405. doi:10.1007/s10658-012-0096-0 es_ES
dc.description.references Liu, M., McCabe, E., Chapados, J. T., Carey, J., Wilson, S. K., Tropiano, R., … Hambleton, S. (2015). Detection and identification of selected cereal rust pathogens by TaqMan®real-time PCR. Canadian Journal of Plant Pathology, 37(1), 92-105. doi:10.1080/07060661.2014.999123 es_ES
dc.description.references Park, J., Park, B., Veeraraghavan, N., Jung, K., Lee, Y.-H., Blair, J. E., … Kang, S. (2008). Phytophthora Database: A Forensic Database Supporting the Identification and Monitoring of Phytophthora. Plant Disease, 92(6), 966-972. doi:10.1094/pdis-92-6-0966 es_ES
dc.description.references Pérez-Sierra, A., López-García, C., León, M., García-Jiménez, J., Abad-Campos, P., & Jung, T. (2013). Previously unrecorded low-temperaturePhytophthoraspecies associated withQuercusdecline in a Mediterranean forest in eastern Spain. Forest Pathology, 43(4), 331-339. doi:10.1111/efp.12037 es_ES
dc.description.references Pulido, F. J., Dı́az, M., & Hidalgo de Trucios, S. J. (2001). Size structure and regeneration of Spanish holm oak Quercus ilex forests and dehesas: effects of agroforestry use on their long-term sustainability. Forest Ecology and Management, 146(1-3), 1-13. doi:10.1016/s0378-1127(00)00443-6 es_ES
dc.description.references SANCHEZ, M. E., CAETANO, P., FERRAZ, J., & TRAPERO, A. (2002). Phytophthora disease of Quercus ilex in south-western Spain. Forest Pathology, 32(1), 5-18. doi:10.1046/j.1439-0329.2002.00261.x es_ES
dc.description.references SCHENA, L., HUGHES, K. J. D., & COOKE, D. E. L. (2006). Detection and quantification ofPhytophthora ramorum,P. kernoviae,P. citricolaandP. quercinain symptomatic leaves by multiplex real-time PCR. Molecular Plant Pathology, 7(5), 365-379. doi:10.1111/j.1364-3703.2006.00345.x es_ES
dc.description.references Scibetta, S., Schena, L., Chimento, A., Cacciola, S. O., & Cooke, D. E. L. (2012). A molecular method to assess Phytophthora diversity in environmental samples. Journal of Microbiological Methods, 88(3), 356-368. doi:10.1016/j.mimet.2011.12.012 es_ES
dc.description.references Silvar, C., Díaz, J., & Merino, F. (2005). Real-Time Polymerase Chain Reaction Quantification of Phytophthora capsici in Different Pepper Genotypes. Phytopathology®, 95(12), 1423-1429. doi:10.1094/phyto-95-1423 es_ES
dc.description.references Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731-2739. doi:10.1093/molbev/msr121 es_ES
dc.description.references Tooley, P. W., Martin, F. N., Carras, M. M., & Frederick, R. D. (2006). Real-Time Fluorescent Polymerase Chain Reaction Detection of Phytophthora ramorum and Phytophthora pseudosyringae Using Mitochondrial Gene Regions. Phytopathology®, 96(4), 336-345. doi:10.1094/phyto-96-0336 es_ES
dc.description.references Vandemark, G. J., & Barker, B. M. (2003). Quantifying Phytophthora medicaginis in Susceptible and Resistant Alfalfa with a Real-Time Fluorescent PCR Assay. Journal of Phytopathology, 151(11-12), 577-583. doi:10.1046/j.0931-1785.2003.00768.x es_ES
dc.description.references Vannini, A., Bruni, N., Tomassini, A., Franceschini, S., & Vettraino, A. M. (2013). Pyrosequencing of environmental soil samples reveals biodiversity of thePhytophthoraresident community in chestnut forests. FEMS Microbiology Ecology, 85(3), 433-442. doi:10.1111/1574-6941.12132 es_ES
dc.description.references VETTRAINO, A. M., BARZANTI, G. P., BIANCO, M. C., RAGAZZI, A., CAPRETTI, P., PAOLETTI, E., … VANNINI, A. (2002). Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology, 32(1), 19-28. doi:10.1046/j.1439-0329.2002.00264.x es_ES
dc.description.references Woodhall, J. W., Adams, I. P., Peters, J. C., Harper, G., & Boonham, N. (2013). A new quantitative real-time PCR assay for Rhizoctonia solani AG3-PT and the detection of AGs of Rhizoctonia solani associated with potato in soil and tuber samples in Great Britain. European Journal of Plant Pathology, 136(2), 273-280. doi:10.1007/s10658-012-0161-8 es_ES
dc.description.references Zhao, J., Wang, X. J., Chen, C. Q., Huang, L. L., & Kang, Z. S. (2007). A PCR-Based Assay for Detection of Puccinia striiformis f. sp. tritici in Wheat. Plant Disease, 91(12), 1669-1674. doi:10.1094/pdis-91-12-1669 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem