- -

Pd supported on mixed metal oxide as an efficient catalyst for the reductive amination of bio-derived acetol to 2-methylpiperazine

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Pd supported on mixed metal oxide as an efficient catalyst for the reductive amination of bio-derived acetol to 2-methylpiperazine

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Mazarío-Santa-Pau, Jaime es_ES
dc.contributor.author Raad, Zaher es_ES
dc.contributor.author Concepción Heydorn, Patricia es_ES
dc.contributor.author Cerdá-Moreno, Cristina es_ES
dc.contributor.author Domine, Marcelo Eduardo es_ES
dc.date.accessioned 2021-04-20T03:31:07Z
dc.date.available 2021-04-20T03:31:07Z
dc.date.issued 2020-12-07 es_ES
dc.identifier.issn 2044-4753 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165358
dc.description.abstract [EN] An efficient process for synthesizing a high added-value N-heterocycle (2-methylpiperazine, 2-MP) via reductive amination of hydroxyacetone or acetol (product of the selective dehydration of glycerol) with ethylenediamine by using Pd supported catalysts under mild reaction conditions is here presented. Catalysts based on Pd nanoparticles supported on metallic oxides and mixed oxides were prepared and characterized by ICP analysis, XRD, HR-TEM, and NH3-TPD, among others. Catalytic activity comparisons of Pd-based materials (also including commercial references) were done and obtained results correlated with metal particle morphology (analyzed by CO-FTIR) and its ability to activate the C = N bond. The best results were attained with Pd/TiO2-Al2O3 and Pd/ZrO2-Al2O3, the former yielding >80% of 2-MP. The Pd/TiO2-Al2O3 catalyst successfully enables the activation of the imine group (C = N), due to a larger number of unsaturated Pd sites in its nanoparticles, while keeping a suitable acidity to effectively and selectively carry out the reductive cyclo-amination reaction even with lower catalyst loadings. This research work offers a new and sustainable catalytic route for the synthesis of organo-nitrogen compounds taking advantage of renewable raw materials (i.e. acetol) as a carbon source and using efficient Pd supported catalysts. es_ES
dc.description.sponsorship The authors express their gratitude to the Spanish Government for the funding (MICINN: CTQ2015-67592, PGC2018-097277-B-I00 and Severo Ochoa Program: SEV-2016-0683). J. M. thanks the MICINN (CTQ2015-67592) for his PhD scholarship. Z. R. thanks the Islamic Center Association for Guidance and Higher Education for his PhD scholarship. The authors also thank the Electron Microscopy Service of Universitat Politecnica de Valencia for their support and M. Parreno-Romero for her assistance with the measurements. es_ES
dc.language Inglés es_ES
dc.publisher The Royal Society of Chemistry es_ES
dc.relation.ispartof Catalysis Science & Technology es_ES
dc.rights Reserva de todos los derechos es_ES
dc.title Pd supported on mixed metal oxide as an efficient catalyst for the reductive amination of bio-derived acetol to 2-methylpiperazine es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1039/d0cy01423k es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//CTQ2015-67592-P/ES/VALORIZACION DE COMPUESTO OXIGENADOS PRESENTES EN FRACCIONES ACUOSAS DERIVADAS DE BIOMASA EN COMBUSTIBLES Y PRODUCTOS QUIMICOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-097277-B-I00/ES/MEJORA DEL CONCEPTO DE BIORREFINERIA MEDIANTE IMPLEMENTACION DE NUEVOS PROCESOS CATALITICOS CON CATALIZADORES SOLIDOS DE METALES NO NOBLES PARA LA PRODUCCION DE BIOCOMPUESTOS/ es_ES
dc.rights.accessRights Abierto es_ES
dc.description.bibliographicCitation Mazarío-Santa-Pau, J.; Raad, Z.; Concepción Heydorn, P.; Cerdá-Moreno, C.; Domine, ME. (2020). Pd supported on mixed metal oxide as an efficient catalyst for the reductive amination of bio-derived acetol to 2-methylpiperazine. Catalysis Science & Technology. 10(23):8049-8063. https://doi.org/10.1039/d0cy01423k es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1039/D0CY01423K es_ES
dc.description.upvformatpinicio 8049 es_ES
dc.description.upvformatpfin 8063 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 23 es_ES
dc.relation.pasarela S\431717 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Stöcker, M. (2008). Biofuels and Biomass‐To‐Liquid Fuels in the Biorefinery: Catalytic Conversion of Lignocellulosic Biomass using Porous Materials. Angewandte Chemie International Edition, 47(48), 9200-9211. doi:10.1002/anie.200801476 es_ES
dc.description.references Huber, G. W., Iborra, S., & Corma, A. (2006). Synthesis of Transportation Fuels from Biomass:  Chemistry, Catalysts, and Engineering. Chemical Reviews, 106(9), 4044-4098. doi:10.1021/cr068360d es_ES
dc.description.references Wang, Y., Furukawa, S., Fu, X., & Yan, N. (2019). Organonitrogen Chemicals from Oxygen-Containing Feedstock over Heterogeneous Catalysts. ACS Catalysis, 10(1), 311-335. doi:10.1021/acscatal.9b03744 es_ES
dc.description.references Sato, S., Akiyama, M., Takahashi, R., Hara, T., Inui, K., & Yokota, M. (2008). Vapor-phase reaction of polyols over copper catalysts. Applied Catalysis A: General, 347(2), 186-191. doi:10.1016/j.apcata.2008.06.013 es_ES
dc.description.references Velasquez, M., Santamaria, A., & Batiot-Dupeyrat, C. (2014). Selective conversion of glycerol to hydroxyacetone in gas phase over La2CuO4 catalyst. Applied Catalysis B: Environmental, 160-161, 606-613. doi:10.1016/j.apcatb.2014.06.006 es_ES
dc.description.references Célerier, S., Morisset, S., Batonneau-Gener, I., Belin, T., Younes, K., & Batiot-Dupeyrat, C. (2018). Glycerol dehydration to hydroxyacetone in gas phase over copper supported on magnesium oxide (hydroxide) fluoride catalysts. Applied Catalysis A: General, 557, 135-144. doi:10.1016/j.apcata.2018.03.022 es_ES
dc.description.references Mazarío, J., Concepción, P., Ventura, M., & Domine, M. E. (2020). Continuous catalytic process for the selective dehydration of glycerol over Cu-based mixed oxide. Journal of Catalysis, 385, 160-175. doi:10.1016/j.jcat.2020.03.010 es_ES
dc.description.references Martin, R. J. (1997). Modes of action of anthelmintic drugs. The Veterinary Journal, 154(1), 11-34. doi:10.1016/s1090-0233(05)80005-x es_ES
dc.description.references Rochelle, G. T. (2009). Amine Scrubbing for CO 2 Capture. Science, 325(5948), 1652-1654. doi:10.1126/science.1176731 es_ES
dc.description.references Freeman, S. A., Dugas, R., Van Wagener, D. H., Nguyen, T., & Rochelle, G. T. (2010). Carbon dioxide capture with concentrated, aqueous piperazine. International Journal of Greenhouse Gas Control, 4(2), 119-124. doi:10.1016/j.ijggc.2009.10.008 es_ES
dc.description.references R. D. Ashford , Ashford's Dictionary of Industrial Chemicals , Wavelength Publications , Saltash , 3rd edn, 2011 es_ES
dc.description.references E.-L. Dreher , K. K.Beutel , J. D.Myers , T.Lübbe , S.Krieger and L. H.Pottenger , in Ullmann's Encyclopedia of Industrial Chemistry , Wiley-VCH , Weinheim , 2014 es_ES
dc.description.references K. Weissermel , H.-J.Arpe , C. R.Lindley and S.Hawkins , in Industrial Organic Chemistry , Wiley-VCH , 2003 , pp. 159–161 es_ES
dc.description.references Kitchen, L. J., & Pollard, C. B. (1947). Derivatives of Piperazine. XXI. Synthesis of Piperazine and C-Substituted Piperazines. Journal of the American Chemical Society, 69(4), 854-855. doi:10.1021/ja01196a034 es_ES
dc.description.references Bai, G., Fan, X., Wang, H., Xu, J., He, F., & Ning, H. (2009). Effects of the preparation methods on the performance of the Cu–Cr–Fe/γ-Al2O3 catalysts for the synthesis of 2-methylpiperazine. Catalysis Communications, 10(15), 2031-2035. doi:10.1016/j.catcom.2009.07.025 es_ES
dc.description.references Narender, N., Srinivasu, P., Kulkarni, S. ., & Raghavan, K. . (2001). Intermolecular Cyclization of Diethanolamine and Methylamine to N,N′-Dimethylpiperazine over Zeolites under High Pressure. Journal of Catalysis, 202(2), 430-433. doi:10.1006/jcat.2001.3291 es_ES
dc.description.references Nagaiah, K., Rao, A. S., Kulkarni, S. J., Subrahmanyam, M., & Rao, A. V. R. (1994). Intermolecular Cyclization of Diethanolamine and Methylamine to N-Methylpiperazine over Zeolites. Journal of Catalysis, 147(1), 349-351. doi:10.1006/jcat.1994.1147 es_ES
dc.description.references Domine, M. E., Hernández-Soto, M. C., Navarro, M. T., & Pérez, Y. (2011). Pt and Pd nanoparticles supported on structured materials as catalysts for the selective reductive amination of carbonyl compounds. Catalysis Today, 172(1), 13-20. doi:10.1016/j.cattod.2011.05.013 es_ES
dc.description.references Domine, M. E., Hernández-Soto, M. C., & Pérez, Y. (2011). Development of metal nanoparticles supported materials as efficient catalysts for reductive amination reactions using high-throughput experimentation. Catalysis Today, 159(1), 2-11. doi:10.1016/j.cattod.2010.08.011 es_ES
dc.description.references H. Blaser , U.Siegrist , H.Steiner , M.Studer , R.Sheldon and H.van Bekkum , Fine chemicals through heterogeneous catalysis , Wiley/VCH , Weinheim , 1st edn, 2001 es_ES
dc.description.references Baiker, A., & Kijenski, J. (1985). Catalytic Synthesis of Higher Aliphatic Amines from the Corresponding Alcohols. Catalysis Reviews, 27(4), 653-697. doi:10.1080/01614948508064235 es_ES
dc.description.references Baxter, E. W., & Reitz, A. B. (2002). Reductive Aminations of Carbonyl Compounds with Borohydride and Borane Reducing Agents. Organic Reactions, 1-714. doi:10.1002/0471264180.or059.01 es_ES
dc.description.references Pelter, A., Rosser, R. M., & Mills, S. (1984). Reductive aminations of ketones and aldehydes using borane–pyridine. J. Chem. Soc., Perkin Trans. 1, (0), 717-720. doi:10.1039/p19840000717 es_ES
dc.description.references Rubio-Pérez, L., Pérez-Flores, F. J., Sharma, P., Velasco, L., & Cabrera, A. (2008). Stable Preformed Chiral Palladium Catalysts for the One-Pot Asymmetric Reductive Amination of Ketones. Organic Letters, 11(2), 265-268. doi:10.1021/ol802336m es_ES
dc.description.references Imao, D., Fujihara, S., Yamamoto, T., Ohta, T., & Ito, Y. (2005). Effective reductive amination of carbonyl compounds with hydrogen catalyzed by iridium complex in organic solvent and in ionic liquid. Tetrahedron, 61(29), 6988-6992. doi:10.1016/j.tet.2005.05.024 es_ES
dc.description.references Enthaler, S. (2010). Synthesis of Secondary Amines by Iron-Catalyzed Reductive Amination. ChemCatChem, 2(11), 1411-1415. doi:10.1002/cctc.201000180 es_ES
dc.description.references Candeias, N. R., & Afonso, C. A. M. (2005). Preparation of non-fused heterocycles in zeolites and mesoporous materials. Journal of Molecular Catalysis A: Chemical, 242(1-2), 195-217. doi:10.1016/j.molcata.2005.07.042 es_ES
dc.description.references Vidal, J. D., Climent, M. J., Concepcion, P., Corma, A., Iborra, S., & Sabater, M. J. (2015). Chemicals from Biomass: Chemoselective Reductive Amination of Ethyl Levulinate with Amines. ACS Catalysis, 5(10), 5812-5821. doi:10.1021/acscatal.5b01113 es_ES
dc.description.references Ueda, W., Yokoyama, T., Moro-Oka, Y., & Ikawa, T. (1984). Catalytic synthesis of vinyl ketones over metal oxide catalysts using methanol as the vinylating agent. Journal of the Chemical Society, Chemical Communications, (1), 39. doi:10.1039/c39840000039 es_ES
dc.description.references Liang, G., Wang, A., Li, L., Xu, G., Yan, N., & Zhang, T. (2017). Production of Primary Amines by Reductive Amination of Biomass-Derived Aldehydes/Ketones. Angewandte Chemie International Edition, 56(11), 3050-3054. doi:10.1002/anie.201610964 es_ES
dc.description.references Mazarío, J., Parreño Romero, M., Concepción, P., Chávez-Sifontes, M., Spanevello, R. A., Comba, M. B., … Domine, M. E. (2019). Tuning zirconia-supported metal catalysts for selective one-step hydrogenation of levoglucosenone. Green Chemistry, 21(17), 4769-4785. doi:10.1039/c9gc01857c es_ES
dc.description.references BORCHERT, H., JURGENS, B., ZIELASEK, V., RUPPRECHTER, G., GIORGIO, S., HENRY, C., & BAUMER, M. (2007). Pd nanoparticles with highly defined structure on MgO as model catalysts: An FTIR study of the interaction with CO, O2, and H2 under ambient conditions. Journal of Catalysis, 247(2), 145-154. doi:10.1016/j.jcat.2007.02.002 es_ES
dc.description.references Tessier, D., Rakai, A., & Bozon-Verduraz, F. (1992). Spectroscopic study of the interaction of carbon monoxide with cationic and metallic palladium in palladium–alumina catalysts. J. Chem. Soc., Faraday Trans., 88(5), 741-749. doi:10.1039/ft9928800741 es_ES
dc.description.references Bertarione, S., Scarano, D., Zecchina, A., Johánek, V., Hoffmann, J., Schauermann, S., … Freund, H.-J. (2004). Surface Reactivity of Pd Nanoparticles Supported on Polycrystalline Substrates As Compared to Thin Film Model Catalysts:  Infrared Study of CO Adsorption. The Journal of Physical Chemistry B, 108(11), 3603-3613. doi:10.1021/jp036718t es_ES
dc.description.references Ferri, D., Mondelli, C., Krumeich, F., & Baiker, A. (2006). Discrimination of Active Palladium Sites in Catalytic Liquid-Phase Oxidation of Benzyl Alcohol. The Journal of Physical Chemistry B, 110(46), 22982-22986. doi:10.1021/jp065779z es_ES
dc.description.references K. H. Oehr and J.Mckinley , in Advances in Thermochemical Biomass Conversion , ed. A. V. Bridgwater , Springer , Dordrecht , 1993 , pp. 1452–1455 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem