- -

Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Cerezo-Navarrete, Christian es_ES
dc.contributor.author Lara, Patricia es_ES
dc.contributor.author Martínez-Prieto, Luis Miguel es_ES
dc.date.accessioned 2021-04-21T03:31:26Z
dc.date.available 2021-04-21T03:31:26Z
dc.date.issued 2020-10 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165403
dc.description.abstract [EN] Over the last 20 years, the use of metallic nanoparticles (MNPs) in catalysis has awakened a great interest in the scientific community, mainly due to the many advantages of this kind of nanostructures in catalytic applications. MNPs exhibit the characteristic stability of heterogeneous catalysts, but with a higher active surface area than conventional metallic materials. However, despite their higher activity, MNPs present a wide variety of active sites, which makes it difficult to control their selectivity in catalytic processes. An efficient way to modulate the activity/selectivity of MNPs is the use of coordinating ligands, which transforms the MNP surface, subsequently modifying the nanoparticle catalytic properties. In relation to this, the use of N-heterocyclic carbenes (NHC) as stabilizing ligands has demonstrated to be an effective tool to modify the size, stability, solubility and catalytic reactivity of MNPs. Although NHC-stabilized MNPs can be prepared by different synthetic methods, this review is centered on those prepared by an organometallic approach. Here, an organometallic precursor is decomposed under H-2 in the presence of non-stoichiometric amounts of the corresponding NHC-ligand. The resulting organometallic nanoparticles present a clean surface, which makes them perfect candidates for catalytic applications and surface studies. In short, this revision study emphasizes the great versatility of NHC ligands as MNP stabilizers, as well as their influence on catalysis. es_ES
dc.description.sponsorship This research was funded by: Proyectos Intramurales Especiales (201880E079), Primero Proyectos de Investigacion PAID-06-18 (SP20180088), Agencia Estatal de Investigacion (PID2019-104159GB-I00/AEI/10.13039/501100011033) and Junta de Andalucia (PY18-3208). The authors thank Instituto de Tecnología Química (ITQ), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Departamento de Química Inorgánica (University of Seville), Institute for Chemical Research (IIQ) for the facilities and Severo Ochoa excellence programme, C.C.-N. thanks Generalitat Valenciana for the predoctoral GVA fellowship (ACIF/2019/076). We gratefully acknowledge B. Chaudret for his invaluable contribution to this research area and his sincere friendship. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Catalysts es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Organometallic nanoparticles es_ES
dc.subject N-heterocyclic carbenes es_ES
dc.subject Organometallic approach es_ES
dc.subject Surface chemistry es_ES
dc.subject Ligand effects es_ES
dc.subject Catalysis es_ES
dc.subject Hydrogenation reactions es_ES
dc.subject H/D exchanges es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/catal10101144 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/CSIC//201880E079/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104159GB-I00/ES/SISTEMAS ORGANOMETALICOS PARA TRANSFORMACIONES ESTEQUIOMETRICAS Y CATALITICAS SELECTIVAS DE DERIVADOS ORGANICOS INSATURADOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/Junta de Andalucía//PY18-3208/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/GVA//ACIF%2F2019%2F076/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/UPV//SP20180088/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Cerezo-Navarrete, C.; Lara, P.; Martínez-Prieto, LM. (2020). Organometallic Nanoparticles Ligated by NHCs: Synthesis, Surface Chemistry and Ligand Effects. Catalysts. 10(10):1-30. https://doi.org/10.3390/catal10101144 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/catal10101144 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 30 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 10 es_ES
dc.identifier.eissn 2073-4344 es_ES
dc.relation.pasarela S\425416 es_ES
dc.contributor.funder Junta de Andalucía es_ES
dc.contributor.funder Generalitat Valenciana es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Universitat Politècnica de València es_ES
dc.contributor.funder Consejo Superior de Investigaciones Científicas es_ES
dc.description.references Hopkinson, M. N., Richter, C., Schedler, M., & Glorius, F. (2014). An overview of N-heterocyclic carbenes. Nature, 510(7506), 485-496. doi:10.1038/nature13384 es_ES
dc.description.references Smith, C. A., Narouz, M. R., Lummis, P. A., Singh, I., Nazemi, A., Li, C.-H., & Crudden, C. M. (2019). N-Heterocyclic Carbenes in Materials Chemistry. Chemical Reviews, 119(8), 4986-5056. doi:10.1021/acs.chemrev.8b00514 es_ES
dc.description.references Arduengo, A. J., Harlow, R. L., & Kline, M. (1991). A stable crystalline carbene [Erratum to document cited in CA114(7):62009r]. Journal of the American Chemical Society, 113(7), 2801-2801. doi:10.1021/ja00007a092 es_ES
dc.description.references Bourissou, D., Guerret, O., Gabbaï, F. P., & Bertrand, G. (1999). Stable Carbenes. Chemical Reviews, 100(1), 39-92. doi:10.1021/cr940472u es_ES
dc.description.references De Frémont, P., Marion, N., & Nolan, S. P. (2009). Carbenes: Synthesis, properties, and organometallic chemistry. Coordination Chemistry Reviews, 253(7-8), 862-892. doi:10.1016/j.ccr.2008.05.018 es_ES
dc.description.references Herrmann, W. A., Gooβen, L. J., & Spiegler, M. (1997). Functionalized imidazoline-2-ylidene complexes of rhodium and palladium. Journal of Organometallic Chemistry, 547(2), 357-366. doi:10.1016/s0022-328x(97)00434-8 es_ES
dc.description.references Poyatos, M., Mata, J. A., & Peris, E. (2009). Complexes with Poly(N-heterocyclic carbene) Ligands: Structural Features and Catalytic Applications. Chemical Reviews, 109(8), 3677-3707. doi:10.1021/cr800501s es_ES
dc.description.references Schaper, L.-A., Hock, S. J., Herrmann, W. A., & Kühn, F. E. (2012). Synthesis and Application of Water-Soluble NHC Transition-Metal Complexes. Angewandte Chemie International Edition, 52(1), 270-289. doi:10.1002/anie.201205119 es_ES
dc.description.references Lara, P., Rivada-Wheelaghan, O., Conejero, S., Poteau, R., Philippot, K., & Chaudret, B. (2011). Ruthenium Nanoparticles Stabilized by N-Heterocyclic Carbenes: Ligand Location and Influence on Reactivity. Angewandte Chemie International Edition, 50(50), 12080-12084. doi:10.1002/anie.201106348 es_ES
dc.description.references Martínez-Prieto, L. M., Ferry, A., Rakers, L., Richter, C., Lecante, P., Philippot, K., … Glorius, F. (2016). Long-chain NHC-stabilized RuNPs as versatile catalysts for one-pot oxidation/hydrogenation reactions. Chemical Communications, 52(26), 4768-4771. doi:10.1039/c6cc01130f es_ES
dc.description.references Lara, P., Suárez, A., Collière, V., Philippot, K., & Chaudret, B. (2013). Platinum N-Heterocyclic Carbene Nanoparticles as New and Effective Catalysts for the Selective Hydrogenation of Nitroaromatics. ChemCatChem, 6(1), 87-90. doi:10.1002/cctc.201300821 es_ES
dc.description.references Ranganath, K. V. S., Schäfer, A. H., & Glorius, F. (2011). Comparison of Superparamagnetic Fe3O4-Supported N-Heterocyclic Carbene-Based Catalysts for Enantioselective Allylation. ChemCatChem, 3(12), 1889-1891. doi:10.1002/cctc.201100201 es_ES
dc.description.references Mollar-Cuni, A., Ventura-Espinosa, D., Martín, S., Mayoral, Á., Borja, P., & Mata, J. A. (2018). Stabilization of Nanoparticles Produced by Hydrogenation of Palladium–N-Heterocyclic Carbene Complexes on the Surface of Graphene and Implications in Catalysis. ACS Omega, 3(11), 15217-15228. doi:10.1021/acsomega.8b02193 es_ES
dc.description.references Hurst, E. C., Wilson, K., Fairlamb, I. J. S., & Chechik, V. (2009). N-Heterocyclic carbene coated metal nanoparticles. New Journal of Chemistry, 33(9), 1837. doi:10.1039/b905559b es_ES
dc.description.references Ranganath, K. V. S., Kloesges, J., Schäfer, A. H., & Glorius, F. (2010). Asymmetric Nanocatalysis: N-Heterocyclic Carbenes as Chiral Modifiers of Fe3O4/Pd nanoparticles. Angewandte Chemie International Edition, 49(42), 7786-7789. doi:10.1002/anie.201002782 es_ES
dc.description.references Planellas, M., Pleixats, R., & Shafir, A. (2012). Palladium Nanoparticles in Suzuki Cross-Couplings: Tapping into the Potential of Tris-Imidazolium Salts for Nanoparticle Stabilization. Advanced Synthesis & Catalysis, 354(4), 651-662. doi:10.1002/adsc.201100574 es_ES
dc.description.references Martínez-Prieto, L. M., Ferry, A., Lara, P., Richter, C., Philippot, K., Glorius, F., & Chaudret, B. (2015). New Route to Stabilize Ruthenium Nanoparticles with Non-Isolable Chiral N-Heterocyclic Carbenes. Chemistry - A European Journal, 21(48), 17495-17502. doi:10.1002/chem.201502601 es_ES
dc.description.references Hintermair, U., Hashmi, S. M., Elimelech, M., & Crabtree, R. H. (2012). Particle Formation during Oxidation Catalysis with Cp* Iridium Complexes. Journal of the American Chemical Society, 134(23), 9785-9795. doi:10.1021/ja3033026 es_ES
dc.description.references Axet, M. R., Conejero, S., & Gerber, I. C. (2018). Ligand Effects on the Selective Hydrogenation of Nitrobenzene to Cyclohexylamine Using Ruthenium Nanoparticles as Catalysts. ACS Applied Nano Materials, 1(10), 5885-5894. doi:10.1021/acsanm.8b01549 es_ES
dc.description.references Martínez-Prieto, L. M., Rakers, L., López-Vinasco, A. M., Cano, I., Coppel, Y., Philippot, K., … van Leeuwen, P. W. N. M. (2017). Soluble Platinum Nanoparticles Ligated by Long-Chain N-Heterocyclic Carbenes as Catalysts. Chemistry - A European Journal, 23(52), 12779-12786. doi:10.1002/chem.201702288 es_ES
dc.description.references Moraes, L. C., Figueiredo, R. C., Espinós, J. P., Vattier, F., Franconetti, A., Jaime, C., … Conejero, S. (2020). Platinum nanoparticles stabilized by N-heterocyclic thiones. Synthesis and catalytic activity in mono- and di-hydroboration of alkynes. Nanoscale, 12(12), 6821-6831. doi:10.1039/d0nr00251h es_ES
dc.description.references Bouzouita, D., Lippens, G., Baquero, E. A., Fazzini, P. F., Pieters, G., Coppel, Y., … Chaudret, B. (2019). Tuning the catalytic activity and selectivity of water-soluble bimetallic RuPt nanoparticles by modifying their surface metal distribution. Nanoscale, 11(35), 16544-16552. doi:10.1039/c9nr04149d es_ES
dc.description.references Pfeifer, V., Certiat, M., Bouzouita, D., Palazzolo, A., Garcia‐Argote, S., Marcon, E., … Pieters, G. (2020). Cover Feature: Hydrogen Isotope Exchange Catalyzed by Ru Nanocatalysts: Labelling of Complex Molecules Containing N ‐Heterocycles and Reaction Mechanism Insights (Chem. Eur. J. 22/2020). Chemistry – A European Journal, 26(22), 4883-4883. doi:10.1002/chem.202000874 es_ES
dc.description.references Amiens, C., Chaudret, B., Ciuculescu-Pradines, D., Collière, V., Fajerwerg, K., Fau, P., … Philippot, K. (2013). Organometallic approach for the synthesis of nanostructures. New Journal of Chemistry, 37(11), 3374. doi:10.1039/c3nj00650f es_ES
dc.description.references Martínez-Prieto, L. M., & Chaudret, B. (2018). Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Accounts of Chemical Research, 51(2), 376-384. doi:10.1021/acs.accounts.7b00378 es_ES
dc.description.references Bradley, J. S., Millar, J., Hill, E. W., & Melchior, M. (1990). The characterization of adsorbed carbon monoxide on colloidal palladium by infrared and high resolution 13C nuclear magnetic resonance spectroscopy. Journal of the Chemical Society, Chemical Communications, (9), 705. doi:10.1039/c39900000705 es_ES
dc.description.references Bradley, J. S., Hill, E. W., Behal, S., Klein, C., Duteil, A., & Chaudret, B. (1992). Preparation and characterization of organosols of monodispersed nanoscale palladium. Particle size effects in the binding geometry of adsorbed carbon monoxide. Chemistry of Materials, 4(6), 1234-1239. doi:10.1021/cm00024a023 es_ES
dc.description.references Novio, F., Philippot, K., & Chaudret, B. (2010). Location and Dynamics of CO Co-ordination on Ru Nanoparticles: A Solid State NMR Study. Catalysis Letters, 140(1-2), 1-7. doi:10.1007/s10562-010-0428-7 es_ES
dc.description.references Rühling, A., Schaepe, K., Rakers, L., Vonhören, B., Tegeder, P., Ravoo, B. J., & Glorius, F. (2016). Modular Bidentate Hybrid NHC-Thioether Ligands for the Stabilization of Palladium Nanoparticles in Various Solvents. Angewandte Chemie International Edition, 55(19), 5856-5860. doi:10.1002/anie.201508933 es_ES
dc.description.references Bradley, J. S., Millar, J. M., Hill, E. W., Behal, S., Chaudret, B., & Duteil, A. (1991). Surface chemistry on colloidal metals: spectroscopic study of adsorption of small molecules. Faraday Discussions, 92, 255. doi:10.1039/fd9919200255 es_ES
dc.description.references Cormary, B., Dumestre, F., Liakakos, N., Soulantica, K., & Chaudret, B. (2013). Organometallic precursors of nano-objects, a critical view. Dalton Transactions, 42(35), 12546. doi:10.1039/c3dt50870f es_ES
dc.description.references Marbaix, J., Mille, N., Lacroix, L.-M., Asensio, J. M., Fazzini, P.-F., Soulantica, K., … Chaudret, B. (2020). Tuning the Composition of FeCo Nanoparticle Heating Agents for Magnetically Induced Catalysis. ACS Applied Nano Materials, 3(4), 3767-3778. doi:10.1021/acsanm.0c00444 es_ES
dc.description.references Martínez-Prieto, L. M., Marbaix, J., Asensio, J. M., Cerezo-Navarrete, C., Fazzini, P.-F., Soulantica, K., … Corma, A. (2020). Ultrastable Magnetic Nanoparticles Encapsulated in Carbon for Magnetically Induced Catalysis. ACS Applied Nano Materials, 3(7), 7076-7087. doi:10.1021/acsanm.0c01392 es_ES
dc.description.references García-Antón, J., Axet, M. R., Jansat, S., Philippot, K., Chaudret, B., Pery, T., … Limbach, H.-H. (2008). Reactions of Olefins with Ruthenium Hydride Nanoparticles: NMR Characterization, Hydride Titration, and Room-Temperature CC Bond Activation. Angewandte Chemie International Edition, 47(11), 2074-2078. doi:10.1002/anie.200704763 es_ES
dc.description.references Lara, P., Philippot, K., & Chaudret, B. (2012). Organometallic Ruthenium Nanoparticles: A Comparative Study of the Influence of the Stabilizer on their Characteristics and Reactivity. ChemCatChem, 5(1), 28-45. doi:10.1002/cctc.201200666 es_ES
dc.description.references Axet, M. R., & Philippot, K. (2020). Catalysis with Colloidal Ruthenium Nanoparticles. Chemical Reviews, 120(2), 1085-1145. doi:10.1021/acs.chemrev.9b00434 es_ES
dc.description.references Dupont, J., Fonseca, G. S., Umpierre, A. P., Fichtner, P. F. P., & Teixeira, S. R. (2002). Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:  Recycable Catalysts for Biphasic Hydrogenation Reactions. Journal of the American Chemical Society, 124(16), 4228-4229. doi:10.1021/ja025818u es_ES
dc.description.references Vidoni, O., Philippot, K., Amiens, C., Chaudret, B., Balmes, O., Malm, J.-O., … Casanove, M.-J. (1999). Novel, Spongelike Ruthenium Particles of Controllable Size Stabilized Only by Organic Solvents. Angewandte Chemie International Edition, 38(24), 3736-3738. doi:10.1002/(sici)1521-3773(19991216)38:24<3736::aid-anie3736>3.0.co;2-e es_ES
dc.description.references Hulea, V., Brunel, D., Galarneau, A., Philippot, K., Chaudret, B., Kooyman, P. J., & Fajula, F. (2005). Synthesis of well-dispersed ruthenium nanoparticles inside mesostructured porous silica under mild conditions. Microporous and Mesoporous Materials, 79(1-3), 185-194. doi:10.1016/j.micromeso.2004.10.041 es_ES
dc.description.references Glaria, A., Soulé, S., Hallali, N., Ojo, W.-S., Mirjolet, M., Fuks, G., … Nayral, C. (2018). Silica coated iron nanoparticles: synthesis, interface control, magnetic and hyperthermia properties. RSC Advances, 8(56), 32146-32156. doi:10.1039/c8ra06075d es_ES
dc.description.references Martínez-Prieto, L. M., Puche, M., Cerezo-Navarrete, C., & Chaudret, B. (2019). Uniform Ru nanoparticles on N-doped graphene for selective hydrogenation of fatty acids to alcohols. Journal of Catalysis, 377, 429-437. doi:10.1016/j.jcat.2019.07.040 es_ES
dc.description.references Vignolle, J., & Tilley, T. D. (2009). N-Heterocyclic carbene-stabilized gold nanoparticles and their assembly into 3D superlattices. Chemical Communications, (46), 7230. doi:10.1039/b913884f es_ES
dc.description.references Pan, C., Pelzer, K., Philippot, K., Chaudret, B., Dassenoy, F., Lecante, P., & Casanove, M.-J. (2001). Ligand-Stabilized Ruthenium Nanoparticles:  Synthesis, Organization, and Dynamics. Journal of the American Chemical Society, 123(31), 7584-7593. doi:10.1021/ja003961m es_ES
dc.description.references Martinez-Espinar, F., Blondeau, P., Nolis, P., Chaudret, B., Claver, C., Castillón, S., & Godard, C. (2017). NHC-stabilised Rh nanoparticles: Surface study and application in the catalytic hydrogenation of aromatic substrates. Journal of Catalysis, 354, 113-127. doi:10.1016/j.jcat.2017.08.010 es_ES
dc.description.references Martínez-Prieto, L. M., Baquero, E. A., Pieters, G., Flores, J. C., de Jesús, E., Nayral, C., … Chaudret, B. (2017). Monitoring of nanoparticle reactivity in solution: interaction of l-lysine and Ru nanoparticles probed by chemical shift perturbation parallels regioselective H/D exchange. Chemical Communications, 53(43), 5850-5853. doi:10.1039/c7cc02445b es_ES
dc.description.references De los Bernardos, M. D., Pérez-Rodríguez, S., Gual, A., Claver, C., & Godard, C. (2017). Facile synthesis of NHC-stabilized Ni nanoparticles and their catalytic application in the Z-selective hydrogenation of alkynes. Chemical Communications, 53(56), 7894-7897. doi:10.1039/c7cc01779k es_ES
dc.description.references Voutchkova, A. M., Appelhans, L. N., Chianese, A. R., & Crabtree, R. H. (2005). Disubstituted Imidazolium-2-Carboxylates as Efficient Precursors to N-Heterocyclic Carbene Complexes of Rh, Ru, Ir, and Pd. Journal of the American Chemical Society, 127(50), 17624-17625. doi:10.1021/ja056625k es_ES
dc.description.references Richter, C., Schaepe, K., Glorius, F., & Ravoo, B. J. (2014). Tailor-made N-heterocyclic carbenes for nanoparticle stabilization. Chemical Communications, 50(24), 3204. doi:10.1039/c4cc00654b es_ES
dc.description.references Ye, R., Zhukhovitskiy, A. V., Kazantsev, R. V., Fakra, S. C., Wickemeyer, B. B., Toste, F. D., & Somorjai, G. A. (2018). Supported Au Nanoparticles with N-Heterocyclic Carbene Ligands as Active and Stable Heterogeneous Catalysts for Lactonization. Journal of the American Chemical Society, 140(11), 4144-4149. doi:10.1021/jacs.8b01017 es_ES
dc.description.references Man, R. W. Y., Li, C.-H., MacLean, M. W. A., Zenkina, O. V., Zamora, M. T., Saunders, L. N., … Crudden, C. M. (2018). Ultrastable Gold Nanoparticles Modified by Bidentate N-Heterocyclic Carbene Ligands. Journal of the American Chemical Society, 140(5), 1576-1579. doi:10.1021/jacs.7b08516 es_ES
dc.description.references Lu, H., Zhou, Z., Prezhdo, O. V., & Brutchey, R. L. (2016). Exposing the Dynamics and Energetics of the N-Heterocyclic Carbene–Nanocrystal Interface. Journal of the American Chemical Society, 138(45), 14844-14847. doi:10.1021/jacs.6b09065 es_ES
dc.description.references Baquero, E. A., Tricard, S., Flores, J. C., de Jesús, E., & Chaudret, B. (2014). Highly Stable Water-Soluble Platinum Nanoparticles Stabilized by Hydrophilic N-Heterocyclic Carbenes. Angewandte Chemie International Edition, 53(48), 13220-13224. doi:10.1002/anie.201407758 es_ES
dc.description.references Baquero, E. A., Tricard, S., Coppel, Y., Flores, J. C., Chaudret, B., & de Jesús, E. (2018). Water-soluble platinum nanoparticles stabilized by sulfonated N-heterocyclic carbenes: influence of the synthetic approach. Dalton Transactions, 47(12), 4093-4104. doi:10.1039/c8dt00240a es_ES
dc.description.references Asensio, J. M., Tricard, S., Coppel, Y., Andrés, R., Chaudret, B., & de Jesús, E. (2016). Knight Shift in 13 C NMR Resonances Confirms the Coordination of N‐Heterocyclic Carbene Ligands to Water‐Soluble Palladium Nanoparticles. Angewandte Chemie International Edition, 56(3), 865-869. doi:10.1002/anie.201610251 es_ES
dc.description.references Asensio, J. M., Tricard, S., Coppel, Y., Andrés, R., Chaudret, B., & de Jesús, E. (2017). Synthesis of Water-Soluble Palladium Nanoparticles Stabilized by Sulfonated N-Heterocyclic Carbenes. Chemistry - A European Journal, 23(54), 13435-13444. doi:10.1002/chem.201702204 es_ES
dc.description.references Duncan, T. M., Zilm, K. W., Hamilton, D. M., & Root, T. W. (1989). Adsorbed states of carbon monoxide on dispersed metals: a high-resolution solid-state NMR study. The Journal of Physical Chemistry, 93(6), 2583-2590. doi:10.1021/j100343a067 es_ES
dc.description.references Terrill, R. H., Postlethwaite, T. A., Chen, C., Poon, C.-D., Terzis, A., Chen, A., … Wignall, G. (1995). Monolayers in Three Dimensions: NMR, SAXS, Thermal, and Electron Hopping Studies of Alkanethiol Stabilized Gold Clusters. Journal of the American Chemical Society, 117(50), 12537-12548. doi:10.1021/ja00155a017 es_ES
dc.description.references Badia, A., Cuccia, L., Demers, L., Morin, F., & Lennox, R. B. (1997). Structure and Dynamics in Alkanethiolate Monolayers Self-Assembled on Gold Nanoparticles:  A DSC, FT-IR, and Deuterium NMR Study. Journal of the American Chemical Society, 119(11), 2682-2692. doi:10.1021/ja963571t es_ES
dc.description.references Ramirez, E., Jansat, S., Philippot, K., Lecante, P., Gomez, M., Masdeu-Bultó, A. M., & Chaudret, B. (2004). Influence of organic ligands on the stabilization of palladium nanoparticles. Journal of Organometallic Chemistry, 689(24), 4601-4610. doi:10.1016/j.jorganchem.2004.09.006 es_ES
dc.description.references Pregosin, P. S., & Ammann, C. (1989). Applications of 2-dimensional NMR in organometallic chemistry. Pure and Applied Chemistry, 61(10), 1771-1776. doi:10.1351/pac198961101771 es_ES
dc.description.references BRADLEY, J. (1991). Surface chemistry on transition metal colloids?an infrared and NMR study of carbon monoxide adsorption on colloidal platinum. Journal of Catalysis, 129(2), 530-539. doi:10.1016/0021-9517(91)90056-a es_ES
dc.description.references Bradley, J. S., Millar, J. M., & Hill, E. W. (1991). Surface chemistry on colloidal metals: a high-resolution NMR study of carbon monoxide adsorbed on metallic palladium crystallites in colloidal suspension. Journal of the American Chemical Society, 113(10), 4016-4017. doi:10.1021/ja00010a067 es_ES
dc.description.references De Caro, D., & Bradley, J. S. (1998). Investigation of the surface structure of colloidal platinum by infrared spectroscopy of adsorbed CO. New Journal of Chemistry, 22(11), 1267-1273. doi:10.1039/a803934h es_ES
dc.description.references Duteil, A., Queau, R., Chaudret, B., Mazel, R., Roucau, C., & Bradley, J. S. (1993). Preparation of organic solutions or solid films of small particles of ruthenium, palladium, and platinum from organometallic precursors in the presence of cellulose derivatives. Chemistry of Materials, 5(3), 341-347. doi:10.1021/cm00027a017 es_ES
dc.description.references Kinayyigit, S., Lara, P., Lecante, P., Philippot, K., & Chaudret, B. (2014). Probing the surface of platinum nanoparticles with13CO by solid-state NMR and IR spectroscopies. Nanoscale, 6(1), 539-546. doi:10.1039/c3nr03948j es_ES
dc.description.references Lara, P., Martínez-Prieto, L. M., Roselló-Merino, M., Richter, C., Glorius, F., Conejero, S., … Chaudret, B. (2016). NHC-stabilized Ru nanoparticles: Synthesis and surface studies. Nano-Structures & Nano-Objects, 6, 39-45. doi:10.1016/j.nanoso.2016.03.003 es_ES
dc.description.references Martínez-Prieto, L. M., Cano, I., Márquez, A., Baquero, E. A., Tricard, S., Cusinato, L., … van Leeuwen, P. W. N. M. (2017). Zwitterionic amidinates as effective ligands for platinum nanoparticle hydrogenation catalysts. Chemical Science, 8(4), 2931-2941. doi:10.1039/c6sc05551f es_ES
dc.description.references Martínez-Prieto, L. M., Urbaneja, C., Palma, P., Cámpora, J., Philippot, K., & Chaudret, B. (2015). A betaine adduct of N-heterocyclic carbene and carbodiimide, an efficient ligand to produce ultra-small ruthenium nanoparticles. Chemical Communications, 51(22), 4647-4650. doi:10.1039/c5cc00211g es_ES
dc.description.references Badia, A., Gao, W., Singh, S., Demers, L., Cuccia, L., & Reven, L. (1996). Structure and Chain Dynamics of Alkanethiol-Capped Gold Colloids. Langmuir, 12(5), 1262-1269. doi:10.1021/la9510487 es_ES
dc.description.references Favier, I., Massou, S., Teuma, E., Philippot, K., Chaudret, B., & Gómez, M. (2008). A new and specific mode of stabilization of metallic nanoparticles. Chemical Communications, (28), 3296. doi:10.1039/b804402c es_ES
dc.description.references Silbestri, G. F., Flores, J. C., & de Jesús, E. (2012). Water-Soluble N-Heterocyclic Carbene Platinum(0) Complexes: Recyclable Catalysts for the Hydrosilylation of Alkynes in Water at Room Temperature. Organometallics, 31(8), 3355-3360. doi:10.1021/om300148q es_ES
dc.description.references Baquero, E. A., Silbestri, G. F., Gómez-Sal, P., Flores, J. C., & de Jesús, E. (2013). Sulfonated Water-Soluble N-Heterocyclic Carbene Silver(I) Complexes: Behavior in Aqueous Medium and as NHC-Transfer Agents to Platinum(II). Organometallics, 32(9), 2814-2826. doi:10.1021/om400228s es_ES
dc.description.references Baquero, E. A., Flores, J. C., Perles, J., Gómez-Sal, P., & de Jesús, E. (2014). Water-Soluble Mono- and Dimethyl N-Heterocyclic Carbene Platinum(II) Complexes: Synthesis and Reactivity. Organometallics, 33(19), 5470-5482. doi:10.1021/om500753v es_ES
dc.description.references Berthon-Gelloz, G., Buisine, O., Brière, J.-F., Michaud, G., Stérin, S., Mignani, G., … Markó, I. E. (2005). Synthetic and structural studies of NHC–Pt(dvtms) complexes and their application as alkene hydrosilylation catalysts (NHC=N-heterocyclic carbene, dvtms=divinyltetramethylsiloxane). Journal of Organometallic Chemistry, 690(24-25), 6156-6168. doi:10.1016/j.jorganchem.2005.08.020 es_ES
dc.description.references Knight, W. D. (1949). Nuclear Magnetic Resonance Shift in Metals. Physical Review, 76(8), 1259-1260. doi:10.1103/physrev.76.1259.2 es_ES
dc.description.references Van der Klink, J. J., & Brom, H. B. (2000). NMR in metals, metal particles and metal cluster compounds. Progress in Nuclear Magnetic Resonance Spectroscopy, 36(2), 89-201. doi:10.1016/s0079-6565(99)00020-5 es_ES
dc.description.references Dassenoy, F., Philippot, K., Ould Ely, T., Amiens, C., Lecante, P., Snoeck, E., … Chaudret, B. (1998). Platinum nanoparticles stabilized by CO and octanethiol ligands or polymers: FT-IR, NMR, HREM and WAXS studies. New Journal of Chemistry, 22(7), 703-712. doi:10.1039/a709245h es_ES
dc.description.references Ramirez, E., Eradès, L., Philippot, K., Lecante, P., & Chaudret, B. (2007). Shape Control of Platinum Nanoparticles. Advanced Functional Materials, 17(13), 2219-2228. doi:10.1002/adfm.200600633 es_ES
dc.description.references Lara, P., Casanove, M.-J., Lecante, P., Fazzini, P.-F., Philippot, K., & Chaudret, B. (2012). Segregation at a small scale: synthesis of core–shell bimetallic RuPt nanoparticles, characterization and solid state NMR studies. Journal of Materials Chemistry, 22(8), 3578. doi:10.1039/c2jm14757b es_ES
dc.description.references Crudden, C. M., Horton, J. H., Ebralidze, I. I., Zenkina, O. V., McLean, A. B., Drevniok, B., … Wu, G. (2014). Ultra stable self-assembled monolayers of N-heterocyclic carbenes on gold. Nature Chemistry, 6(5), 409-414. doi:10.1038/nchem.1891 es_ES
dc.description.references Zhukhovitskiy, A. V., Mavros, M. G., Van Voorhis, T., & Johnson, J. A. (2013). Addressable Carbene Anchors for Gold Surfaces. Journal of the American Chemical Society, 135(20), 7418-7421. doi:10.1021/ja401965d es_ES
dc.description.references Cushing, B. L., Kolesnichenko, V. L., & O’Connor, C. J. (2004). Recent Advances in the Liquid-Phase Syntheses of Inorganic Nanoparticles. Chemical Reviews, 104(9), 3893-3946. doi:10.1021/cr030027b es_ES
dc.description.references Lee, C. K., Vasam, C. S., Huang, T. W., Wang, H. M. J., Yang, R. Y., Lee, C. S., & Lin, I. J. B. (2006). Silver(I) N-Heterocyclic Carbenes with Long N-Alkyl Chains. Organometallics, 25(15), 3768-3775. doi:10.1021/om060198h es_ES
dc.description.references Bakker, A., Timmer, A., Kolodzeiski, E., Freitag, M., Gao, H. Y., Mönig, H., … Fuchs, H. (2018). Elucidating the Binding Modes of N-Heterocyclic Carbenes on a Gold Surface. Journal of the American Chemical Society, 140(38), 11889-11892. doi:10.1021/jacs.8b06180 es_ES
dc.description.references Kaeffer, N., Mance, D., & Copéret, C. (2020). N‐Heterocyclic Carbene Coordination to Surface Copper Sites in Selective Semihydrogenation Catalysts from Solid‐State NMR Spectroscopy. Angewandte Chemie International Edition, 59(45), 19999-20007. doi:10.1002/anie.202006209 es_ES
dc.description.references Ferry, A., Schaepe, K., Tegeder, P., Richter, C., Chepiga, K. M., Ravoo, B. J., & Glorius, F. (2015). Negatively Charged N-Heterocyclic Carbene-Stabilized Pd and Au Nanoparticles and Efficient Catalysis in Water. ACS Catalysis, 5(9), 5414-5420. doi:10.1021/acscatal.5b01160 es_ES
dc.description.references Ruiz-Varilla, A. M., Baquero, E. A., Chaudret, B., de Jesús, E., Gonzalez-Arellano, C., & Flores, J. C. (2020). Water-soluble NHC-stabilized platinum nanoparticles as recoverable catalysts for hydrogenation in water. Catalysis Science & Technology, 10(9), 2874-2881. doi:10.1039/d0cy00481b es_ES
dc.description.references Otting, G. (1993). Experimental NMR techniques for studies of protein-ligand interactions. Current Opinion in Structural Biology, 3(5), 760-768. doi:10.1016/0959-440x(93)90061-o es_ES
dc.description.references Gossert, A. D., & Jahnke, W. (2016). NMR in drug discovery: A practical guide to identification and validation of ligands interacting with biological macromolecules. Progress in Nuclear Magnetic Resonance Spectroscopy, 97, 82-125. doi:10.1016/j.pnmrs.2016.09.001 es_ES
dc.description.references Cusinato, L., del Rosal, I., & Poteau, R. (2017). Shape, electronic structure and steric effects of organometallic nanocatalysts: relevant tools to improve the synergy between theory and experiment. Dalton Transactions, 46(2), 378-395. doi:10.1039/c6dt04207d es_ES
dc.description.references Gonzalez-Galvez, D., Lara, P., Rivada-Wheelaghan, O., Conejero, S., Chaudret, B., Philippot, K., & van Leeuwen, P. W. N. M. (2013). NHC-stabilized ruthenium nanoparticles as new catalysts for the hydrogenation of aromatics. Catal. Sci. Technol., 3(1), 99-105. doi:10.1039/c2cy20561k es_ES
dc.description.references Zahmakıran, M., Philippot, K., Özkar, S., & Chaudret, B. (2012). Size-controllable APTS stabilized ruthenium(0)nanoparticlescatalyst for the dehydrogenation of dimethylamine–borane at room temperature. Dalton Trans., 41(2), 590-598. doi:10.1039/c1dt11290b es_ES
dc.description.references López-Vinasco, A. M., Martínez-Prieto, L. M., Asensio, J. M., Lecante, P., Chaudret, B., Cámpora, J., & van Leeuwen, P. W. N. M. (2020). Novel nickel nanoparticles stabilized by imidazolium-amidinate ligands for selective hydrogenation of alkynes. Catalysis Science & Technology, 10(2), 342-350. doi:10.1039/c9cy02172h es_ES
dc.description.references Rakers, L., Martínez-Prieto, L. M., López-Vinasco, A. M., Philippot, K., van Leeuwen, P. W. N. M., Chaudret, B., & Glorius, F. (2018). Ruthenium nanoparticles ligated by cholesterol-derived NHCs and their application in the hydrogenation of arenes. Chemical Communications, 54(51), 7070-7073. doi:10.1039/c8cc02833h es_ES
dc.description.references Rakers, L., Grill, D., Matos, A. L. L., Wulff, S., Wang, D., Börgel, J., … Glorius, F. (2018). Addressable Cholesterol Analogs for Live Imaging of Cellular Membranes. Cell Chemical Biology, 25(8), 952-961.e12. doi:10.1016/j.chembiol.2018.04.015 es_ES
dc.description.references Tegeder, P., Freitag, M., Chepiga, K. M., Muratsugu, S., Möller, N., Lamping, S., … Ravoo, B. J. (2018). N‐Heterocyclic Carbene‐Modified Au–Pd Alloy Nanoparticles and Their Application as Biomimetic and Heterogeneous Catalysts. Chemistry – A European Journal, 24(70), 18682-18688. doi:10.1002/chem.201803274 es_ES
dc.description.references Kunz, S. (2016). Supported, Ligand-Functionalized Nanoparticles: An Attempt to Rationalize the Application and Potential of Ligands in Heterogeneous Catalysis. Topics in Catalysis, 59(19-20), 1671-1685. doi:10.1007/s11244-016-0687-7 es_ES
dc.description.references Ernst, J. B., Muratsugu, S., Wang, F., Tada, M., & Glorius, F. (2016). Tunable Heterogeneous Catalysis: N-Heterocyclic Carbenes as Ligands for Supported Heterogeneous Ru/K-Al2O3 Catalysts To Tune Reactivity and Selectivity. Journal of the American Chemical Society, 138(34), 10718-10721. doi:10.1021/jacs.6b03821 es_ES
dc.description.references Palazzolo, A., Naret, T., Daniel‐Bertrand, M., Buisson, D., Tricard, S., Lesot, P., … Pieters, G. (2020). Tuning the Reactivity of a Heterogeneous Catalyst using N‐Heterocyclic Carbene Ligands for C−H Activation Reactions. Angewandte Chemie International Edition, 59(47), 20879-20884. doi:10.1002/anie.202009258 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem