- -

Impact of Zeolite Framework Composition and Flexibility on Methanol-To-Olefins Selectivity: Confinement or Diffusion?

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Impact of Zeolite Framework Composition and Flexibility on Methanol-To-Olefins Selectivity: Confinement or Diffusion?

Show full item record

Ferri-Vicedo, P.; Li, C.; Millán-Cabrera, R.; Martínez-Triguero, J.; Moliner Marin, M.; Boronat Zaragoza, M.; Corma Canós, A. (2020). Impact of Zeolite Framework Composition and Flexibility on Methanol-To-Olefins Selectivity: Confinement or Diffusion?. Angewandte Chemie International Edition. 59(44):19708-19715. https://doi.org/10.1002/anie.202007609

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165409

Files in this item

Item Metadata

Title: Impact of Zeolite Framework Composition and Flexibility on Methanol-To-Olefins Selectivity: Confinement or Diffusion?
Author: Ferri-Vicedo, Pau Li, Chengeng Millán-Cabrera, Reisel Martínez-Triguero, Joaquín Moliner Marin, Manuel Boronat Zaragoza, Mercedes Corma Canós, Avelino
UPV Unit: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Issued date:
Abstract:
[EN] The methanol-to-olefins reaction catalyzed by small-pore cage-based acid zeolites and zeotypes produces a mixture of short chain olefins, whose selectivity to ethene, propene and butene varies with the cavity architecture ...[+]
Subjects: Ab initio calculations , Diffusion , MTO , Reaction mechanism , Structure-selectivity relationship
Copyrigths: Reserva de todos los derechos
Source:
Angewandte Chemie International Edition. (issn: 1433-7851 )
DOI: 10.1002/anie.202007609
Publisher:
John Wiley & Sons
Publisher version: https://doi.org/10.1002/anie.202007609
Project ID:
info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F060/
Description: This is the peer reviewed version of the following article: P. Ferri, C. Li, R. Millán, J. Martínez-Triguero, M. Moliner, M. Boronat, A. Corma, Angew. Chem. Int. Ed. 2020, 59, 19708, which has been published in final form at https://doi.org/10.1002/anie.202007609. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.
Thanks:
This work has been supported by the European Union through ERC-AdG-2014-671093 (SynCatMatch), Spanish Government through "Severo Ochoa" (SEV-2016-0683, MINECO), MAT2017-82288-C2-1-P (AEI/FEDER, UE) and RTI2018-101033-B-I00 ...[+]
Type: Artículo

References

Olah, G. A. (2005). Beyond Oil and Gas: The Methanol Economy. Angewandte Chemie International Edition, 44(18), 2636-2639. doi:10.1002/anie.200462121

Olah, G. A. (2005). Jenseits von Öl und Gas: die Methanolwirtschaft. Angewandte Chemie, 117(18), 2692-2696. doi:10.1002/ange.200462121

Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007 [+]
Olah, G. A. (2005). Beyond Oil and Gas: The Methanol Economy. Angewandte Chemie International Edition, 44(18), 2636-2639. doi:10.1002/anie.200462121

Olah, G. A. (2005). Jenseits von Öl und Gas: die Methanolwirtschaft. Angewandte Chemie, 117(18), 2692-2696. doi:10.1002/ange.200462121

Tian, P., Wei, Y., Ye, M., & Liu, Z. (2015). Methanol to Olefins (MTO): From Fundamentals to Commercialization. ACS Catalysis, 5(3), 1922-1938. doi:10.1021/acscatal.5b00007

Haw, J. F., Song, W., Marcus, D. M., & Nicholas, J. B. (2003). The Mechanism of Methanol to Hydrocarbon Catalysis. Accounts of Chemical Research, 36(5), 317-326. doi:10.1021/ar020006o

Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Conversion of Methanol to Hydrocarbons: How Zeolite Cavity and Pore Size Controls Product Selectivity. Angewandte Chemie International Edition, 51(24), 5810-5831. doi:10.1002/anie.201103657

Olsbye, U., Svelle, S., Bjørgen, M., Beato, P., Janssens, T. V. W., Joensen, F., … Lillerud, K. P. (2012). Umwandlung von Methanol in Kohlenwasserstoffe: Wie Zeolith-Hohlräume und Porengröße die Produktselektivität bestimmen. Angewandte Chemie, 124(24), 5910-5933. doi:10.1002/ange.201103657

Van Speybroeck, V., De Wispelaere, K., Van der Mynsbrugge, J., Vandichel, M., Hemelsoet, K., & Waroquier, M. (2014). First principle chemical kinetics in zeolites: the methanol-to-olefin process as a case study. Chem. Soc. Rev., 43(21), 7326-7357. doi:10.1039/c4cs00146j

Yarulina, I., Chowdhury, A. D., Meirer, F., Weckhuysen, B. M., & Gascon, J. (2018). Recent trends and fundamental insights in the methanol-to-hydrocarbons process. Nature Catalysis, 1(6), 398-411. doi:10.1038/s41929-018-0078-5

Moliner, M., Martínez, C., & Corma, A. (2013). Synthesis Strategies for Preparing Useful Small Pore Zeolites and Zeotypes for Gas Separations and Catalysis. Chemistry of Materials, 26(1), 246-258. doi:10.1021/cm4015095

McCann, D. M., Lesthaeghe, D., Kletnieks, P. W., Guenther, D. R., Hayman, M. J., Van Speybroeck, V., … Haw, J. F. (2008). A Complete Catalytic Cycle for Supramolecular Methanol‐to‐Olefins Conversion by Linking Theory with Experiment. Angewandte Chemie International Edition, 47(28), 5179-5182. doi:10.1002/anie.200705453

McCann, D. M., Lesthaeghe, D., Kletnieks, P. W., Guenther, D. R., Hayman, M. J., Van Speybroeck, V., … Haw, J. F. (2008). A Complete Catalytic Cycle for Supramolecular Methanol‐to‐Olefins Conversion by Linking Theory with Experiment. Angewandte Chemie, 120(28), 5257-5260. doi:10.1002/ange.200705453

Wang, C.-M., Wang, Y.-D., Xie, Z.-K., & Liu, Z.-P. (2009). Methanol to Olefin Conversion on HSAPO-34 Zeolite from Periodic Density Functional Theory Calculations: A Complete Cycle of Side Chain Hydrocarbon Pool Mechanism. The Journal of Physical Chemistry C, 113(11), 4584-4591. doi:10.1021/jp810350x

Ilias, S., & Bhan, A. (2012). Mechanism of the Catalytic Conversion of Methanol to Hydrocarbons. ACS Catalysis, 3(1), 18-31. doi:10.1021/cs3006583

De Wispelaere, K., Hemelsoet, K., Waroquier, M., & Van Speybroeck, V. (2013). Complete low-barrier side-chain route for olefin formation during methanol conversion in H-SAPO-34. Journal of Catalysis, 305, 76-80. doi:10.1016/j.jcat.2013.04.015

Hemelsoet, K., Van der Mynsbrugge, J., De Wispelaere, K., Waroquier, M., & Van Speybroeck, V. (2013). Unraveling the Reaction Mechanisms Governing Methanol-to-Olefins Catalysis by Theory and Experiment. ChemPhysChem, 14(8), 1526-1545. doi:10.1002/cphc.201201023

Li, J., Wei, Y., Chen, J., Tian, P., Su, X., Xu, S., … Liu, Z. (2011). Observation of Heptamethylbenzenium Cation over SAPO-Type Molecular Sieve DNL-6 under Real MTO Conversion Conditions. Journal of the American Chemical Society, 134(2), 836-839. doi:10.1021/ja209950x

Xu, S., Zheng, A., Wei, Y., Chen, J., Li, J., Chu, Y., … Liu, Z. (2013). Direct Observation of Cyclic Carbenium Ions and Their Role in the Catalytic Cycle of the Methanol-to-Olefin Reaction over Chabazite Zeolites. Angewandte Chemie International Edition, 52(44), 11564-11568. doi:10.1002/anie.201303586

Xu, S., Zheng, A., Wei, Y., Chen, J., Li, J., Chu, Y., … Liu, Z. (2013). Direct Observation of Cyclic Carbenium Ions and Their Role in the Catalytic Cycle of the Methanol-to-Olefin Reaction over Chabazite Zeolites. Angewandte Chemie, 125(44), 11778-11782. doi:10.1002/ange.201303586

Li, J., Wei, Y., Chen, J., Xu, S., Tian, P., Yang, X., … Liu, Z. (2014). Cavity Controls the Selectivity: Insights of Confinement Effects on MTO Reaction. ACS Catalysis, 5(2), 661-665. doi:10.1021/cs501669k

Zhang, W., Chen, J., Xu, S., Chu, Y., Wei, Y., Zhi, Y., … Liu, Z. (2018). Methanol to Olefins Reaction over Cavity-type Zeolite: Cavity Controls the Critical Intermediates and Product Selectivity. ACS Catalysis, 8(12), 10950-10963. doi:10.1021/acscatal.8b02164

Song, W., Fu, H., & Haw, J. F. (2001). Supramolecular Origins of Product Selectivity for Methanol-to-Olefin Catalysis on HSAPO-34. Journal of the American Chemical Society, 123(20), 4749-4754. doi:10.1021/ja0041167

Svelle, S., Olsbye, U., Joensen, F., & Bjørgen, M. (2007). Conversion of Methanol to Alkenes over Medium- and Large-Pore Acidic Zeolites:  Steric Manipulation of the Reaction Intermediates Governs the Ethene/Propene Product Selectivity. The Journal of Physical Chemistry C, 111(49), 17981-17984. doi:10.1021/jp077331j

Hwang, A., Johnson, B. A., & Bhan, A. (2019). Mechanistic study of methylbenzene dealkylation in methanol-to-olefins catalysis on HSAPO-34. Journal of Catalysis, 369, 86-94. doi:10.1016/j.jcat.2018.10.022

Bhawe, Y., Moliner-Marin, M., Lunn, J. D., Liu, Y., Malek, A., & Davis, M. (2012). Effect of Cage Size on the Selective Conversion of Methanol to Light Olefins. ACS Catalysis, 2(12), 2490-2495. doi:10.1021/cs300558x

Kang, J. H., Walter, R., Xie, D., Davis, T., Chen, C.-Y., Davis, M. E., & Zones, S. I. (2018). Further Studies on How the Nature of Zeolite Cavities That Are Bounded by Small Pores Influences the Conversion of Methanol to Light Olefins. ChemPhysChem, 19(4), 412-419. doi:10.1002/cphc.201701197

Kang, J. H., Alshafei, F. H., Zones, S. I., & Davis, M. E. (2019). Cage-Defining Ring: A Molecular Sieve Structural Indicator for Light Olefin Product Distribution from the Methanol-to-Olefins Reaction. ACS Catalysis, 9(7), 6012-6019. doi:10.1021/acscatal.9b00746

Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7

Ferri, P., Li, C., Paris, C., Vidal-Moya, A., Moliner, M., Boronat, M., & Corma, A. (2019). Chemical and Structural Parameter Connecting Cavity Architecture, Confined Hydrocarbon Pool Species, and MTO Product Selectivity in Small-Pore Cage-Based Zeolites. ACS Catalysis, 9(12), 11542-11551. doi:10.1021/acscatal.9b04588

Chen, J., Li, J., Yuan, C., Xu, S., Wei, Y., Wang, Q., … Liu, Z. (2014). Elucidating the olefin formation mechanism in the methanol to olefin reaction over AlPO-18 and SAPO-18. Catalysis Science & Technology, 4(9), 3268. doi:10.1039/c4cy00551a

Dusselier, M., Deimund, M. A., Schmidt, J. E., & Davis, M. E. (2015). Methanol-to-Olefins Catalysis with Hydrothermally Treated Zeolite SSZ-39. ACS Catalysis, 5(10), 6078-6085. doi:10.1021/acscatal.5b01577

Martín, N., Li, Z., Martínez-Triguero, J., Yu, J., Moliner, M., & Corma, A. (2016). Nanocrystalline SSZ-39 zeolite as an efficient catalyst for the methanol-to-olefin (MTO) process. Chemical Communications, 52(36), 6072-6075. doi:10.1039/c5cc09719c

Martínez-Franco, R., Li, Z., Martínez-Triguero, J., Moliner, M., & Corma, A. (2016). Improving the catalytic performance of SAPO-18 for the methanol-to-olefins (MTO) reaction by controlling the Si distribution and crystal size. Catalysis Science & Technology, 6(8), 2796-2806. doi:10.1039/c5cy02298c

Bleken, F., Bjørgen, M., Palumbo, L., Bordiga, S., Svelle, S., Lillerud, K.-P., & Olsbye, U. (2009). The Effect of Acid Strength on the Conversion of Methanol to Olefins Over Acidic Microporous Catalysts with the CHA Topology. Topics in Catalysis, 52(3), 218-228. doi:10.1007/s11244-008-9158-0

Wang, C.-M., Wang, Y.-D., Du, Y.-J., Yang, G., & Xie, Z.-K. (2015). Similarities and differences between aromatic-based and olefin-based cycles in H-SAPO-34 and H-SSZ-13 for methanol-to-olefins conversion: insights from energetic span model. Catalysis Science & Technology, 5(9), 4354-4364. doi:10.1039/c5cy00483g

Gallego, E. M., Li, C., Paris, C., Martín, N., Martínez-Triguero, J., Boronat, M., … Corma, A. (2018). Making Nanosized CHA Zeolites with Controlled Al Distribution for Optimizing Methanol-to-Olefin Performance. Chemistry - A European Journal, 24(55), 14631-14635. doi:10.1002/chem.201803637

Chen, D., Moljord, K., & Holmen, A. (2012). A methanol to olefins review: Diffusion, coke formation and deactivation on SAPO type catalysts. Microporous and Mesoporous Materials, 164, 239-250. doi:10.1016/j.micromeso.2012.06.046

Wang, C., Li, B., Wang, Y., & Xie, Z. (2013). Insight into the topology effect on the diffusion of ethene and propene in zeolites: A molecular dynamics simulation study. Journal of Energy Chemistry, 22(6), 914-918. doi:10.1016/s2095-4956(14)60272-2

Ghysels, A., Moors, S. L. C., Hemelsoet, K., De Wispelaere, K., Waroquier, M., Sastre, G., & Van Speybroeck, V. (2015). Shape-Selective Diffusion of Olefins in 8-Ring Solid Acid Microporous Zeolites. The Journal of Physical Chemistry C, 119(41), 23721-23734. doi:10.1021/acs.jpcc.5b06010

Cnudde, P., Demuynck, R., Vandenbrande, S., Waroquier, M., Sastre, G., & Speybroeck, V. V. (2020). Light Olefin Diffusion during the MTO Process on H-SAPO-34: A Complex Interplay of Molecular Factors. Journal of the American Chemical Society, 142(13), 6007-6017. doi:10.1021/jacs.9b10249

“Structure Commission of the International Zeolite Association (IZA-SC) Database of Zeolite structures ” can be found underhttp://www.iza-structure.org/databases/ n.d.

Olson, D. H., Camblor, M. A., Villaescusa, L. A., & Kuehl, G. H. (2004). Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 67(1), 27-33. doi:10.1016/j.micromeso.2003.09.025

Ruthven, D. M., & Reyes, S. C. (2007). Adsorptive separation of light olefins from paraffins. Microporous and Mesoporous Materials, 104(1-3), 59-66. doi:10.1016/j.micromeso.2007.01.005

Hedin, N., DeMartin, G. J., Roth, W. J., Strohmaier, K. G., & Reyes, S. C. (2008). PFG NMR self-diffusion of small hydrocarbons in high silica DDR, CHA and LTA structures. Microporous and Mesoporous Materials, 109(1-3), 327-334. doi:10.1016/j.micromeso.2007.05.007

Li, Z., Martínez-Triguero, J., Concepción, P., Yu, J., & Corma, A. (2013). Methanol to olefins: activity and stability of nanosized SAPO-34 molecular sieves and control of selectivity by silicon distribution. Physical Chemistry Chemical Physics, 15(35), 14670. doi:10.1039/c3cp52247d

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record