- -

Experimental evidence reveals both cross-infection and cross-contamination risk of embryos storage in liquid nitrogen biobanks

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

  • Estadisticas de Uso

Experimental evidence reveals both cross-infection and cross-contamination risk of embryos storage in liquid nitrogen biobanks

Show simple item record

Files in this item

dc.contributor.author Marín, Clara es_ES
dc.contributor.author Garcia-Dominguez, X es_ES
dc.contributor.author Montoro-Dasí, Laura es_ES
dc.contributor.author Lorenzo-Rebenaque, Laura es_ES
dc.contributor.author Vicente Antón, José Salvador es_ES
dc.contributor.author Marco-Jiménez, Francisco es_ES
dc.date.accessioned 2021-04-22T03:31:19Z
dc.date.available 2021-04-22T03:31:19Z
dc.date.issued 2020-04 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165478
dc.description.abstract [EN] This study was conducted to demonstrate the potential hazards of cross-infection and cross-contamination of embryos during storage in liquid nitrogen biobanks. For the harmless and successful cryopreservation of embryos, the vitrification method must be chosen meticulously to guarantee not only a high post-thaw survival of embryos, but also to reduce the risk of disease transmission when those embryos are in storage for long periods. In recent decades, gamete and embryo cryopreservation have become routine procedures in livestock and human assisted reproduction. However, the safe storage of germplasm and the prevention of disease transmission continue to be potential hazards of disease transmission through embryo transfer. This study aimed to demonstrate the potential risk of cross-infection of embryos from contaminated liquid nitrogen, and cross-contamination of sterile liquid nitrogen from infected embryos in naked and closed devices. Additionally, we examined the effects of antibiotic-free media on culture development of infected embryos. The study was a laboratory-based analysis using rabbit as a model. Two experiments were performed to evaluate both cross-infection (liquid nitrogen to embryos) and cross-contamination (embryos to liquid nitrogen) of artificially inoculated Salmonella Typhimurium, Staphylococcus aureus, Enterobacter aerogenes, and Aspergillus brasiliensis. Rapid cooling through vitrification was conducted on rabbit embryos, stored for a year, thawed, and cultured. In vivo produced late morulae-early blastocyst stages (72 h) embryos were used (n = 480). Embryos were cultured for 1 h in solutions with and without pathogens. Then, the embryos were vitrified and stored in naked and closed devices for one year in two liquid nitrogen biobanks (one pathogen-free and the other artificially contaminated). Embryos were warmed and cultured for a further 48 h, assessing the development and the presence of microorganism (chromogenic media, scanning electron microscopy). Embryos stored in naked devices in artificially contaminated liquid nitrogen became infected (12.5%), while none of the embryos stored in closed devices were infected. Meanwhile, storage of artificially infected embryos incurred liquid nitrogen biobank contamination (100%). Observations by scanning electron microscopy revealed that all the microorganisms were caught in the surface of embryos after the vitrification-thawed procedure. Nevertheless, embryos cultured in antibiotics and antimycotic medium developed to the hatched blastocyst stage, while artificially infected embryos cultured in antibiotic-free medium failed to develop. In conclusion, our findings support that both cross-contamination and cross-infection during embryo storage in liquid nitrogen biobanks are plausible. So, to ensure biosafety for the cryogenic storage, closed systems that avoid direct contact with liquid nitrogen must be used. Moreover, it seems essential to provide best practice guidelines for the cryogenic preservation and storage of gametes and embryos, to define appropriate quality and risk management procedures. es_ES
dc.description.sponsorship This research was supported by the Ministry of Economy, Industry and Competitiveness (MICINN), through a Spanish research project (AGL2017-85162-C2-1-R). es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Animals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Microorganisms es_ES
dc.subject Pathogen transmission es_ES
dc.subject Vitrification es_ES
dc.subject Bacteria es_ES
dc.subject Fungi es_ES
dc.subject Embryo es_ES
dc.subject Naked device es_ES
dc.subject Closed device es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.subject.classification BIOLOGIA ANIMAL es_ES
dc.title Experimental evidence reveals both cross-infection and cross-contamination risk of embryos storage in liquid nitrogen biobanks es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ani10040598 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Marín, C.; Garcia-Dominguez, X.; Montoro-Dasí, L.; Lorenzo-Rebenaque, L.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Experimental evidence reveals both cross-infection and cross-contamination risk of embryos storage in liquid nitrogen biobanks. Animals. 10(4):1-13. https://doi.org/10.3390/ani10040598 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ani10040598 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 4 es_ES
dc.identifier.eissn 2076-2615 es_ES
dc.identifier.pmid 32244732 es_ES
dc.identifier.pmcid PMC7222773 es_ES
dc.relation.pasarela S\407044 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Kushnir, V. A., Barad, D. H., Albertini, D. F., Darmon, S. K., & Gleicher, N. (2017). Systematic review of worldwide trends in assisted reproductive technology 2004–2013. Reproductive Biology and Endocrinology, 15(1). doi:10.1186/s12958-016-0225-2 es_ES
dc.description.references De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2018). ART in Europe, 2014: results generated from European registries by ESHRE†. Human Reproduction, 33(9), 1586-1601. doi:10.1093/humrep/dey242 es_ES
dc.description.references Bielanski, A., Bergeron, H., Lau, P. C. K., & Devenish, J. (2003). Microbial contamination of embryos and semen during long term banking in liquid nitrogen. Cryobiology, 46(2), 146-152. doi:10.1016/s0011-2240(03)00020-8 es_ES
dc.description.references Bielanski, A., & Vajta, G. (2009). Risk of contamination of germplasm during cryopreservation and cryobanking in IVF units. Human Reproduction, 24(10), 2457-2467. doi:10.1093/humrep/dep117 es_ES
dc.description.references Molina, I., Mari, M., Martínez, J. V., Novella-Maestre, E., Pellicer, N., & Pemán, J. (2016). Bacterial and fungal contamination risks in human oocyte and embryo cryopreservation: open versus closed vitrification systems. Fertility and Sterility, 106(1), 127-132. doi:10.1016/j.fertnstert.2016.03.024 es_ES
dc.description.references Bielanski, A. (2014). Biosafety in Embryos and Semen Cryopreservation, Storage, Management and Transport. Advances in Experimental Medicine and Biology, 429-465. doi:10.1007/978-1-4939-0820-2_17 es_ES
dc.description.references Bielanski, A., Nadin-Davis, S., Sapp, T., & Lutze-Wallace, C. (2000). Viral Contamination of Embryos Cryopreserved in Liquid Nitrogen. Cryobiology, 40(2), 110-116. doi:10.1006/cryo.1999.2227 es_ES
dc.description.references Tedeschi, R., & De Paoli, P. (2010). Collection and Preservation of Frozen Microorganisms. Methods in Biobanking, 313-326. doi:10.1007/978-1-59745-423-0_18 es_ES
dc.description.references Kuwayama, M., Vajta, G., Ieda, S., & Kato, O. (2005). Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reproductive BioMedicine Online, 11(5), 608-614. doi:10.1016/s1472-6483(10)61169-8 es_ES
dc.description.references Bielanski, A. (2007). Disinfection procedures for controlling microorganisms in the semen and embryos of humans and farm animals. Theriogenology, 68(1), 1-22. doi:10.1016/j.theriogenology.2007.03.025 es_ES
dc.description.references Alikani, M. (2018). Cryostorage of human gametes and embryos: a reckoning. Reproductive BioMedicine Online, 37(1), 1-3. doi:10.1016/j.rbmo.2018.05.004 es_ES
dc.description.references Bielanski, A. (2012). A review of the risk of contamination of semen and embryos during cryopreservation and measures to limit cross-contamination during banking to prevent disease transmission in ET practices. Theriogenology, 77(3), 467-482. doi:10.1016/j.theriogenology.2011.07.043 es_ES
dc.description.references Joaquim, D. C., Borges, E. D., Viana, I. G. R., Navarro, P. A., & Vireque, A. A. (2017). Risk of Contamination of Gametes and Embryos during Cryopreservation and Measures to Prevent Cross-Contamination. BioMed Research International, 2017, 1-11. doi:10.1155/2017/1840417 es_ES
dc.description.references Hubálek, Z. (2003). Protectants used in the cryopreservation of microorganisms. Cryobiology, 46(3), 205-229. doi:10.1016/s0011-2240(03)00046-4 es_ES
dc.description.references Pomeroy, K. O., Harris, S., Conaghan, J., Papadakis, M., Centola, G., Basuray, R., & Battaglia, D. (2010). Storage of cryopreserved reproductive tissues: evidence that cross-contamination of infectious agents is a negligible risk. Fertility and Sterility, 94(4), 1181-1188. doi:10.1016/j.fertnstert.2009.04.031 es_ES
dc.description.references Kastrop, P. M. M., de Graaf-Miltenburg, L. A. M., Gutknecht, D. R., & Weima, S. M. (2007). Microbial contamination of embryo cultures in an ART laboratory: sources and management. Human Reproduction, 22(8), 2243-2248. doi:10.1093/humrep/dem165 es_ES
dc.description.references THIBIER, M. (2011). Embryo transfer: a comparative biosecurity avantage in international movements of germplasm. Revue Scientifique et Technique de l’OIE, 30(1), 177-188. doi:10.20506/rst.30.1.2024 es_ES
dc.description.references Dissanayake, D. M. A. B., Perera, R. R. D. P., Wijesinghe, P., & Amaranath, K. (2014). Antibiotics supplemented culture media can eliminate non-specific bacteria from human semen during sperm preparation for intra uterine insemination. Journal of Human Reproductive Sciences, 7(1), 58. doi:10.4103/0974-1208.130859 es_ES
dc.description.references Magli, M. C., Gianaroli, L., Fiorentino, A., Ferraretti, A. P., Fortini, D., & Panzella, S. (1996). Fertilization and early embryology: Improved cleavage rate of human embryos cultured in antibiotic-free medium. Human Reproduction, 11(7), 1520-1524. doi:10.1093/oxfordjournals.humrep.a019430 es_ES
dc.description.references Zhou, H., McKiernan, S. H., Ji, W., & Bavister, B. D. (2000). Effect of antibiotics on development in vitro of hamster pronucleate ova. Theriogenology, 54(7), 999-1006. doi:10.1016/s0093-691x(00)00408-8 es_ES
dc.description.references Larman, M. G., Hashimoto, S., Morimoto, Y., & Gardner, D. K. (2014). Cryopreservation in ART and concerns with contamination during cryobanking. Reproductive Medicine and Biology, 13(3), 107-117. doi:10.1007/s12522-014-0176-2 es_ES
dc.description.references Marco-Jiménez, F., Jiménez-Trigos, E., Almela-Miralles, V., & Vicente, J. S. (2016). Development of Cheaper Embryo Vitrification Device Using the Minimum Volume Method. PLOS ONE, 11(2), e0148661. doi:10.1371/journal.pone.0148661 es_ES
dc.description.references Cobo, A., Romero, J. L., Pérez, S., de los Santos, M. J., Meseguer, M., & Remohí, J. (2010). Storage of human oocytes in the vapor phase of nitrogen. Fertility and Sterility, 94(5), 1903-1907. doi:10.1016/j.fertnstert.2009.10.042 es_ES
dc.description.references Nakashima, A., Ino, N., Kusumi, M., Ohgi, S., Ito, M., Horikawa, T., … Saito, H. (2010). Optimization of a novel nylon mesh container for human embryo ultrarapid vitrification. Fertility and Sterility, 93(7), 2405-2410. doi:10.1016/j.fertnstert.2009.01.063 es_ES
dc.description.references Chen, Y., Zheng, X., Yan, J., Qiao, J., & Liu, P. (2013). Neonatal outcomes after the transfer of vitrified blastocysts: closed versus open vitrification system. Reproductive Biology and Endocrinology, 11(1). doi:10.1186/1477-7827-11-107 es_ES
dc.description.references Panagiotidis, Y., Vanderzwalmen, P., Prapas, Y., Kasapi, E., Goudakou, M., Papatheodorou, A., … Maroulis, G. (2013). Open versus closed vitrification of blastocysts from an oocyte-donation programme: a prospective randomized study. Reproductive BioMedicine Online, 26(5), 470-476. doi:10.1016/j.rbmo.2013.01.016 es_ES
dc.description.references Cai, H., Niringiyumukiza, J. D., Li, Y., Lai, Q., Jia, Y., Su, P., & Xiang, W. (2018). Open versus closed vitrification system of human oocytes and embryos: a systematic review and meta-analysis of embryologic and clinical outcomes. Reproductive Biology and Endocrinology, 16(1). doi:10.1186/s12958-018-0440-0 es_ES
dc.description.references Paffoni, A., Guarneri, C., Ferrari, S., Restelli, L., Nicolosi, A. E., Scarduelli, C., & Ragni, G. (2011). Effects of two vitrification protocols on the developmental potential of human mature oocytes. Reproductive BioMedicine Online, 22(3), 292-298. doi:10.1016/j.rbmo.2010.11.004 es_ES
dc.description.references García-Domínguez, X., Marco-Jiménez, F., Puigcerver-Barber, M., Más-Pellicer, A., & Vicente, J. S. (2020). The harmful effect of removing the extracellular vitrification medium during embryo cryopreservation using a nylon mesh device in rabbit. Cryobiology, 93, 44-48. doi:10.1016/j.cryobiol.2020.02.013 es_ES
dc.description.references Mehaisen, G. M. K., & Saeed, A. M. (2013). In vitro development rate of preimplantation rabbit embryos cultured with different levels of melatonin. Zygote, 23(1), 111-115. doi:10.1017/s0967199413000415 es_ES
dc.description.references Parmegiani, L., Accorsi, A., Bernardi, S., Arnone, A., Cognigni, G. E., & Filicori, M. (2012). A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: three washes with sterile liquid nitrogen (SLN2). Fertility and Sterility, 98(4), 870-875. doi:10.1016/j.fertnstert.2012.06.028 es_ES
dc.description.references Arav, A., & Natan, Y. (2019). The Near Future of Vitrification of Oocytes and Embryos: Looking into Past Experience and Planning into the Future. Transfusion Medicine and Hemotherapy, 46(3), 182-187. doi:10.1159/000497749 es_ES
dc.description.references Tedder, R. ., Zuckerman, M. ., Brink, N. ., Goldstone, A. ., Fielding, A., Blair, S., … Irwin, D. (1995). Hepatitis B transmission from contaminated cryopreservation tank. The Lancet, 346(8968), 137-140. doi:10.1016/s0140-6736(95)91207-x es_ES
dc.description.references Iaffaldano, N., Reale, A., Sorrentino, E., Coppola, R., Di Iorio, M., & Rosato, M. P. (2010). Risk of Salmonella transmission via cryopreserved semen in turkey flocks. Poultry Science, 89(9), 1975-1980. doi:10.3382/ps.2009-00573 es_ES
dc.description.references Ayatollahi, A. A., Amini, A., Rahimi, S., Takrami, S. R., Darsanaki, R. K., & Nezhad, M. S. (2017). Prevalence of gram-negative bacilli isolated from the equipment and surfaces in hospital wards of Golestan province, North of Iran. European Journal of Microbiology and Immunology, 7(4), 261-266. doi:10.1556/1886.2017.00015 es_ES
dc.description.references Vancraeynest, D., Haesebrouck, F., Deplano, A., Denis, O., Godard, C., Wildemauwe, C., & Hermans, K. (2006). International Dissemination of a High Virulence Rabbit Staphylococcus aureus Clone. Journal of Veterinary Medicine Series B, 53(9), 418-422. doi:10.1111/j.1439-0450.2006.00977.x es_ES
dc.description.references Paterson, G. K., Harrison, E. M., & Holmes, M. A. (2014). The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends in Microbiology, 22(1), 42-47. doi:10.1016/j.tim.2013.11.003 es_ES
dc.description.references Edwards, J. F., Lassala, A. L., & Spencer, T. E. (2008). Staphylococcus-associated Abortions in Ewes with Long-term Central Venous Catheterization. Veterinary Pathology, 45(6), 881-888. doi:10.1354/vp.45-6-881 es_ES
dc.description.references Ardigò, P., D’Incau, M., & Pongolini, S. (2014). Abortion in cattle due to infection with Staphylococcus lugdunensis. Journal of Veterinary Diagnostic Investigation, 26(6), 818-820. doi:10.1177/1040638714550182 es_ES
dc.description.references EL-KEST, S. E., & MARTH, E. H. (1992). Freezing of Listeria monocytogenes and Other Microorganisms: A Review. Journal of Food Protection, 55(8), 639-648. doi:10.4315/0362-028x-55.8.639 es_ES
dc.description.references Bortolami, A., Williams, N. J., McGowan, C. M., Kelly, P. G., Archer, D. C., Corrò, M., … Timofte, D. (2017). Environmental surveillance identifies multiple introductions of MRSA CC398 in an Equine Veterinary Hospital in the UK, 2011–2016. Scientific Reports, 7(1). doi:10.1038/s41598-017-05559-8 es_ES
dc.description.references Friedman, N. D., Temkin, E., & Carmeli, Y. (2016). The negative impact of antibiotic resistance. Clinical Microbiology and Infection, 22(5), 416-422. doi:10.1016/j.cmi.2015.12.002 es_ES
dc.description.references Lemeire, K., Van Merris, V., & Cortvrindt, R. (2007). The antibiotic streptomycin assessed in a battery of in vitro tests for reproductive toxicology. Toxicology in Vitro, 21(7), 1348-1353. doi:10.1016/j.tiv.2007.05.004 es_ES
dc.description.references Levy, S. B., & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine, 10(S12), S122-S129. doi:10.1038/nm1145 es_ES
dc.description.references Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O., & Piddock, L. J. V. (2014). Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology, 13(1), 42-51. doi:10.1038/nrmicro3380 es_ES
dc.description.references Boucher, H. W., Talbot, G. H., Bradley, J. S., Edwards, J. E., Gilbert, D., Rice, L. B., … Bartlett, J. (2009). Bad Bugs, No Drugs: No ESKAPE! An Update from the Infectious Diseases Society of America. Clinical Infectious Diseases, 48(1), 1-12. doi:10.1086/595011 es_ES
dc.description.references Khan, S. N., & Khan, A. U. (2016). Breaking the Spell: Combating Multidrug Resistant ‘Superbugs’. Frontiers in Microbiology, 7. doi:10.3389/fmicb.2016.00174 es_ES
dc.description.references Asokan, G., Ramadhan, T., Ahmed, E., … Sanad, H. (2019). WHO Global Priority Pathogens List: A Bibliometric Analysis of Medline-PubMed for Knowledge Mobilization to Infection Prevention and Control Practices in Bahrain. Oman Medical Journal, 34(3), 184-193. doi:10.5001/omj.2019.37 es_ES
dc.description.references Anjum, M. F., Marco-Jimenez, F., Duncan, D., Marín, C., Smith, R. P., & Evans, S. J. (2019). Livestock-Associated Methicillin-Resistant Staphylococcus aureus From Animals and Animal Products in the UK. Frontiers in Microbiology, 10. doi:10.3389/fmicb.2019.02136 es_ES
dc.description.references Schulze, M., Schäfer, J., Simmet, C., Jung, M., & Gabler, C. (2018). Detection and characterization of Lactobacillus spp. in the porcine seminal plasma and their influence on boar semen quality. PLOS ONE, 13(9), e0202699. doi:10.1371/journal.pone.0202699 es_ES
dc.description.references Nicolas, I., Bordeau, V., Bondon, A., Baudy-Floc’h, M., & Felden, B. (2019). Novel antibiotics effective against gram-positive and -negative multi-resistant bacteria with limited resistance. PLOS Biology, 17(7), e3000337. doi:10.1371/journal.pbio.3000337 es_ES


This item appears in the following Collection(s)

Show simple item record