- -

Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits

Show full item record

Garcia-Dominguez, X.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals. 10(5):1-17. https://doi.org/10.3390/ani10050804

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165483

Files in this item

Item Metadata

Title: Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits
Author: Garcia-Dominguez, X Vicente Antón, José Salvador Marco-Jiménez, Francisco
UPV Unit: Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal
Issued date:
Abstract:
[EN] This study was conducted to demonstrate how embryo manipulation techniques incur phenotypic changes throughout life. This study reports the first evidence demonstrating that the vitrification device used is not a ...[+]
Subjects: Assisted reproduction technology , Perinatal outcomes , Postnatal outcomes , Embryo transfer , Embryo vitrification
Copyrigths: Reconocimiento (by)
Source:
Animals. (eissn: 2076-2615 )
DOI: 10.3390/ani10050804
Publisher:
MDPI AG
Publisher version: https://doi.org/10.3390/ani10050804
Project ID:
info:eu-repo/grantAgreement/MINECO//AGL2014-53405-C2-1-P/ES/MEJORA GENETICA DEL CONEJO DE CARNE:RESPUESTA A LA SELECCION Y SU EFECTO SOBRE LA REPRODUCCION, ALIMENTACION Y SALUD UTILIZANDO UNA POBLACION CONTROL CRIOCONSERVADA/
info:eu-repo/grantAgreement/MINECO//BES-2015-072429/ES/BES-2015-072429/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/
Thanks:
Funding from the Ministry of Economy, Industry and Competitiveness (research project: AGL2014-53405-C2-1-P and AGL2017-85162-C2-1-R) is acknowledged. X.G.-D. was supported by a research grant from the Ministry of Economy, ...[+]
Type: Artículo

References

Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028

García-Martínez, S., Sánchez Hurtado, M. A., Gutiérrez, H., Sánchez Margallo, F. M., Romar, R., Latorre, R., … López Albors, O. (2018). Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. MHR: Basic science of reproductive medicine, 24(5), 260-270. doi:10.1093/molehr/gay008

Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034 [+]
Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028

García-Martínez, S., Sánchez Hurtado, M. A., Gutiérrez, H., Sánchez Margallo, F. M., Romar, R., Latorre, R., … López Albors, O. (2018). Mimicking physiological O2 tension in the female reproductive tract improves assisted reproduction outcomes in pig. MHR: Basic science of reproductive medicine, 24(5), 260-270. doi:10.1093/molehr/gay008

Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034

Vrooman, L. A., & Bartolomei, M. S. (2017). Can assisted reproductive technologies cause adult-onset disease? Evidence from human and mouse. Reproductive Toxicology, 68, 72-84. doi:10.1016/j.reprotox.2016.07.015

Servick, K. (2014). Unsettled questions trail IVF’s success. Science, 345(6198), 744-746. doi:10.1126/science.345.6198.744

Skelly, A., Dettori, J., & Brodt, E. (2012). Assessing bias: the importance of considering confounding. Evidence-Based Spine-Care Journal, 3(01), 9-12. doi:10.1055/s-0031-1298595

Chen, M., & Heilbronn, L. K. (2017). The health outcomes of human offspring conceived by assisted reproductive technologies (ART). Journal of Developmental Origins of Health and Disease, 8(4), 388-402. doi:10.1017/s2040174417000228

Halliday, J., Lewis, S., Kennedy, J., Burgner, D. P., Juonala, M., Hammarberg, K., … McLachlan, R. (2019). Health of adults aged 22 to 35 years conceived by assisted reproductive technology. Fertility and Sterility, 112(1), 130-139. doi:10.1016/j.fertnstert.2019.03.001

Juonala, M., Lewis, S., McLachlan, R., Hammarberg, K., Kennedy, J., Saffery, R., … Halliday, J. (2019). American Heart Association ideal cardiovascular health score and subclinical atherosclerosis in 22–35-year-old adults conceived with and without assisted reproductive technologies. Human Reproduction, 35(1), 232-239. doi:10.1093/humrep/dez240

Duranthon, V., & Chavatte-Palmer, P. (2018). Long term effects of ART: What do animals tell us? Molecular Reproduction and Development, 85(4), 348-368. doi:10.1002/mrd.22970

Ramos‐Ibeas, P., Heras, S., Gómez‐Redondo, I., Planells, B., Fernández‐González, R., Pericuesta, E., … Gutiérrez‐Adán, A. (2019). Embryo responses to stress induced by assisted reproductive technologies. Molecular Reproduction and Development, 86(10), 1292-1306. doi:10.1002/mrd.23119

Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023x

De Geyter, C., Calhaz-Jorge, C., Kupka, M. S., Wyns, C., Mocanu, E., Motrenko, T., … Goossens, V. (2020). ART in Europe, 2015: results generated from European registries by ESHRE†. Human Reproduction Open, 2020(1). doi:10.1093/hropen/hoz038

Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826

Hargreave, M., Jensen, A., Hansen, M. K., Dehlendorff, C., Winther, J. F., Schmiegelow, K., & Kjær, S. K. (2019). Association Between Fertility Treatment and Cancer Risk in Children. JAMA, 322(22), 2203. doi:10.1001/jama.2019.18037

Norrman, E., Petzold, M., Clausen, T. D., Henningsen, A.-K., Opdahl, S., Pinborg, A., … Wennerholm, U.-B. (2020). Type 1 diabetes in children born after assisted reproductive technology: a register-based national cohort study. Human Reproduction, 35(1), 221-231. doi:10.1093/humrep/dez227

Rienzi, L., Gracia, C., Maggiulli, R., LaBarbera, A. R., Kaser, D. J., Ubaldi, F. M., … Racowsky, C. (2016). Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance. Human Reproduction Update. doi:10.1093/humupd/dmw038

Arav, A. (2014). Cryopreservation of oocytes and embryos. Theriogenology, 81(1), 96-102. doi:10.1016/j.theriogenology.2013.09.011

Saragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. REPRODUCTION, 141(1), 1-19. doi:10.1530/rep-10-0236

Vicente, J. S., & García-Ximénez, F. (1994). Osmotic and cryoprotective effects of a mixture of DMSO and ethylene glycol on rabbit morulae. Theriogenology, 42(7), 1205-1215. doi:10.1016/0093-691x(94)90869-9

Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511

Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055

Besenfelder, U., Strouhal, C., & Brem, G. (1998). A Method for Endoscopic Embryo Collection and Transfer in the Rabbit. Journal of Veterinary Medicine Series A, 45(1-10), 577-579. doi:10.1111/j.1439-0442.1998.tb00861.x

Blasco, A., & Gómez, E. (1993). A note on growth curves of rabbit lines selected on growth rate or litter size. Animal Science, 57(2), 332-334. doi:10.1017/s000335610000698x

Maertens L., Lebas F., & Szendro ZS. (2010). Rabbit milk: A review of quantity, quality and non-dietary affecting factors. World Rabbit Science, 14(4). doi:10.4995/wrs.2006.565

Novakovic, B., Lewis, S., Halliday, J., Kennedy, J., Burgner, D. P., Czajko, A., … Saffery, R. (2019). Assisted reproductive technologies are associated with limited epigenetic variation at birth that largely resolves by adulthood. Nature Communications, 10(1). doi:10.1038/s41467-019-11929-9

Seki, S., & Mazur, P. (2009). The dominance of warming rate over cooling rate in the survival of mouse oocytes subjected to a vitrification procedure. Cryobiology, 59(1), 75-82. doi:10.1016/j.cryobiol.2009.04.012

Mazur, P., & Seki, S. (2011). Survival of mouse oocytes after being cooled in a vitrification solution to −196°C at 95° to 70,000°C/min and warmed at 610° to 118,000°C/min: A new paradigm for cryopreservation by vitrification. Cryobiology, 62(1), 1-7. doi:10.1016/j.cryobiol.2010.10.159

Zhang, X., Catalano, P. N., Gurkan, U. A., Khimji, I., & Demirci, U. (2011). Emerging technologies in medical applications of minimum volume vitrification. Nanomedicine, 6(6), 1115-1129. doi:10.2217/nnm.11.71

Marco-Jiménez, F., Lavara, R., Jiménez-Trigos, E., & Vicente, J. S. (2013). In vivo development of vitrified rabbit embryos: Effects of vitrification device, recipient genotype, and asynchrony. Theriogenology, 79(7), 1124-1129. doi:10.1016/j.theriogenology.2013.02.008

Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019

Riesche, L., & Bartolomei, M. (2018). Assisted Reproductive Technologies and the Placenta: Clinical, Morphological, and Molecular Outcomes. Seminars in Reproductive Medicine, 36(03/04), 240-248. doi:10.1055/s-0038-1676640

Tan, K., Wang, Z., Zhang, Z., An, L., & Tian, J. (2016). IVF affects embryonic development in a sex-biased manner in mice. REPRODUCTION, 151(4), 443-453. doi:10.1530/rep-15-0588

Tan, K., An, L., Miao, K., Ren, L., Hou, Z., Tao, L., … Tian, J. (2016). Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proceedings of the National Academy of Sciences, 113(12), 3197-3202. doi:10.1073/pnas.1523538113

Maalouf, W. E., Mincheva, M. N., Campbell, B. K., & Hardy, I. C. W. (2014). Effects of assisted reproductive technologies on human sex ratio at birth. Fertility and Sterility, 101(5), 1321-1325. doi:10.1016/j.fertnstert.2014.01.041

Supramaniam, P. R., Mittal, M., Ohuma, E. O., Lim, L. N., McVeigh, E., Granne, I., & Becker, C. M. (2019). Secondary sex ratio in assisted reproduction: an analysis of 1 376 454 treatment cycles performed in the UK. Human Reproduction Open, 2019(4). doi:10.1093/hropen/hoz020

Lin, P.-Y., Huang, F.-J., Kung, F.-T., Wang, L.-J., Chang, S. Y., & Lan, K.-C. (2009). Comparison of the offspring sex ratio between fresh and vitrification-thawed blastocyst transfer. Fertility and Sterility, 92(5), 1764-1766. doi:10.1016/j.fertnstert.2009.05.011

Chen, M., Du, J., Zhao, J., Lv, H., Wang, Y., Chen, X., … Ling, X. (2017). The sex ratio of singleton and twin delivery offspring in assisted reproductive technology in China. Scientific Reports, 7(1). doi:10.1038/s41598-017-06152-9

Leme, L. O., Carvalho, J. O., Franco, M. M., & Dode, M. A. N. (2020). Effect of sex on cryotolerance of bovine embryos produced in vitro. Theriogenology, 141, 219-227. doi:10.1016/j.theriogenology.2019.05.002

Spijkers, S., Lens, J. W., Schats, R., & Lambalk, C. B. (2017). Fresh and Frozen-Thawed Embryo Transfer Compared to Natural Conception: Differences in Perinatal Outcome. Gynecologic and Obstetric Investigation, 82(6), 538-546. doi:10.1159/000468935

Chen, L., Ni, X., Xu, Z., Fang, J., Zhang, N., & Li, D. (2020). Effect of frozen and fresh embryo transfers on the birthweight of live-born twins. European Journal of Obstetrics & Gynecology and Reproductive Biology, 246, 50-54. doi:10.1016/j.ejogrb.2020.01.008

Uk, A., Collardeau-Frachon, S., Scanvion, Q., Michon, L., & Amar, E. (2018). Assisted Reproductive Technologies and imprinting disorders: Results of a study from a French congenital malformations registry. European Journal of Medical Genetics, 61(9), 518-523. doi:10.1016/j.ejmg.2018.05.017

Li, Y., Donnelly, C. G., & Rivera, R. M. (2019). Overgrowth Syndrome. Veterinary Clinics of North America: Food Animal Practice, 35(2), 265-276. doi:10.1016/j.cvfa.2019.02.007

Chen, Z., Hagen, D. E., Elsik, C. G., Ji, T., Morris, C. J., Moon, L. E., & Rivera, R. M. (2015). Characterization of global loss of imprinting in fetal overgrowth syndrome induced by assisted reproduction. Proceedings of the National Academy of Sciences, 112(15), 4618-4623. doi:10.1073/pnas.1422088112

Mussa, A., Molinatto, C., Cerrato, F., Palumbo, O., Carella, M., Baldassarre, G., … Ferrero, G. B. (2017). Assisted Reproductive Techniques and Risk of Beckwith-Wiedemann Syndrome. Pediatrics, 140(1), e20164311. doi:10.1542/peds.2016-4311

Van Heertum, K., & Weinerman, R. (2018). Neonatal outcomes following fresh as compared to frozen/thawed embryo transfer in in vitro fertilization. Birth Defects Research, 110(8), 625-629. doi:10.1002/bdr2.1216

Feuer, S. K., Liu, X., Donjacour, A., Lin, W., Simbulan, R. K., Giritharan, G., … Rinaudo, P. F. (2014). Use of a Mouse In Vitro Fertilization Model to Understand the Developmental Origins of Health and Disease Hypothesis. Endocrinology, 155(5), 1956-1969. doi:10.1210/en.2013-2081

Marshall, K. L., & Rivera, R. M. (2018). The effects of superovulation and reproductive aging on the epigenome of the oocyte and embryo. Molecular Reproduction and Development, 85(2), 90-105. doi:10.1002/mrd.22951

Gordon Baker, H. W. (1998). REPRODUCTIVE EFFECTS OF NONTESTICULAR ILLNESS. Endocrinology and Metabolism Clinics of North America, 27(4), 831-850. doi:10.1016/s0889-8529(05)70043-8

Calle, A., Miranda, A., Fernandez-Gonzalez, R., Pericuesta, E., Laguna, R., & Gutierrez-Adan, A. (2012). Male Mice Produced by In Vitro Culture Have Reduced Fertility and Transmit Organomegaly and Glucose Intolerance to Their Male Offspring1. Biology of Reproduction, 87(2). doi:10.1095/biolreprod.112.100743

Belva, F., Bonduelle, M., Roelants, M., Michielsen, D., Van Steirteghem, A., Verheyen, G., & Tournaye, H. (2016). Semen quality of young adult ICSI offspring: the first results. Human Reproduction, 31(12), 2811-2820. doi:10.1093/humrep/dew245

Vidal, M., Vellvé, K., González-Comadran, M., Robles, A., Prat, M., Torné, M., … Checa, M. A. (2017). Perinatal outcomes in children born after fresh or frozen embryo transfer: a Catalan cohort study based on 14,262 newborns. Fertility and Sterility, 107(4), 940-947. doi:10.1016/j.fertnstert.2017.01.021

Sallem, A., Santulli, P., Barraud-Lange, V., Le Foll, N., Ferreux, L., Maignien, C., … Pocate-Cheriet, K. (2017). Extended culture of poor-quality supernumerary embryos improves ART outcomes. Journal of Assisted Reproduction and Genetics, 35(2), 311-319. doi:10.1007/s10815-017-1063-7

Marsico, T. V., Camargo, J. de, Valente, R. S., & Sudano, M. J. (2019). Embryo competence and cryosurvival: Molecular and cellular features. Animal Reproduction, 16(3), 423-439. doi:10.21451/1984-3143-ar2019-0072

Mehdid, A., Martí-De Olives, A., Fernández, N., Rodríguez, M., & Peris, C. (2019). Effect of stress on somatic cell count and milk yield and composition in goats. Research in Veterinary Science, 125, 61-70. doi:10.1016/j.rvsc.2019.05.015

Sinclair, K. D., Rutherford, K. M. D., Wallace, J. M., Brameld, J. M., Stöger, R., Alberio, R., … Dwyer, C. M. (2016). Epigenetics and developmental programming of welfare and production traits in farm animals. Reproduction, Fertility and Development, 28(10), 1443. doi:10.1071/rd16102

Siqueira, L. G. B., Dikmen, S., Ortega, M. S., & Hansen, P. J. (2017). Postnatal phenotype of dairy cows is altered by in vitro embryo production using reverse X-sorted semen. Journal of Dairy Science, 100(7), 5899-5908. doi:10.3168/jds.2016-12539

Mahsoudi, B., Li, A., & O’Neill, C. (2007). Assessment of the Long-Term and Transgenerational Consequences of Perturbing Preimplantation Embryo Development in Mice1. Biology of Reproduction, 77(5), 889-896. doi:10.1095/biolreprod.106.057885

Del Ciampo, L., & Del Ciampo, I. (2018). Breastfeeding and the Benefits of Lactation for Women’s Health. Revista Brasileira de Ginecologia e Obstetrícia / RBGO Gynecology and Obstetrics, 40(06), 354-359. doi:10.1055/s-0038-1657766

Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016

Auroux, M. (2000). Long-term effects in progeny of paternal environment and of gamete/embryo cryopreservation. Human Reproduction Update, 6(6), 550-563. doi:10.1093/humupd/6.6.550

[-]

recommendations

 

This item appears in the following Collection(s)

Show full item record