- -

Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds

Mostrar el registro completo del ítem

Rodríguez-Fernández, A.; Di Iorio, JR.; Paris, C.; Boronat Zaragoza, M.; Corma Canós, A.; Román-Leshkov, Y.; Moliner Marin, M. (2020). Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds. Chemical Science. 11(37):10225-10235. https://doi.org/10.1039/d0sc03809a

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165484

Ficheros en el ítem

Metadatos del ítem

Título: Selective active site placement in Lewis acid zeolites and implications for catalysis of oxygenated compounds
Autor: Rodríguez-Fernández, Aida Di Iorio, John R. Paris, Cecilia Boronat Zaragoza, Mercedes Corma Canós, Avelino Román-Leshkov, Yuriy Moliner Marin, Manuel
Entidad UPV: Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química
Universitat Politècnica de València. Departamento de Química - Departament de Química
Fecha difusión:
Resumen:
[EN] The selective incorporation of isolated framework Lewis acid sites at specific crystallographic positions in high-silica zeolites was achieved by applying a rationalized post-synthetic grafting methodology. The removal ...[+]
Derechos de uso: Reconocimiento - No comercial (by-nc)
Fuente:
Chemical Science. (issn: 2041-6520 )
DOI: 10.1039/d0sc03809a
Editorial:
The Royal Society of Chemistry
Versión del editor: https://doi.org/10.1039/d0sc03809a
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
...[+]
info:eu-repo/grantAgreement/MINECO//SEV-2016-0683/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MAT2017-82288-C2-1-P/ES/MATERIALES HIBRIDOS MULTIFUNCIONALES BASADOS EN NANO-UNIDADES ESTRUCTURALES ACTIVAS/
info:eu-repo/grantAgreement/DOE//DE-SC0016214/
info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-101033-B-I00/ES/DISEÑO DE CATALIZADORES MULTIFUNCIONALES PARA LA CONVERSION EFICIENTE DE BIOGAS Y GAS NATURAL A HIDROCARBUROS DE INTERES INDUSTRIAL/
info:eu-repo/grantAgreement/GVA//AICO%2F2019%2F060/
info:eu-repo/grantAgreement/AEI//FPU2017%2F01521/
[-]
Agradecimientos:
This work has been supported by the Spanish Government-MINECO through ''Severo Ochoa" (SEV-2016-0683), MAT2017-82288-C2-1-P (AEI/FEDER, UE) and RTI2018-101033-B-I00 (MCIU/AEI/FEDER, UE), and by Generalitat Valenciana through ...[+]
Tipo: Artículo

References

Knott, B. C., Nimlos, C. T., Robichaud, D. J., Nimlos, M. R., Kim, S., & Gounder, R. (2017). Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 8(2), 770-784. doi:10.1021/acscatal.7b03676

Dědeček, J., Tabor, E., & Sklenak, S. (2018). Tuning the Aluminum Distribution in Zeolites to Increase their Performance in Acid-Catalyzed Reactions. ChemSusChem, 12(3), 556-576. doi:10.1002/cssc.201801959

Chen, J., Liang, T., Li, J., Wang, S., Qin, Z., Wang, P., … Wang, J. (2016). Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catalysis, 6(4), 2299-2313. doi:10.1021/acscatal.5b02862 [+]
Knott, B. C., Nimlos, C. T., Robichaud, D. J., Nimlos, M. R., Kim, S., & Gounder, R. (2017). Consideration of the Aluminum Distribution in Zeolites in Theoretical and Experimental Catalysis Research. ACS Catalysis, 8(2), 770-784. doi:10.1021/acscatal.7b03676

Dědeček, J., Tabor, E., & Sklenak, S. (2018). Tuning the Aluminum Distribution in Zeolites to Increase their Performance in Acid-Catalyzed Reactions. ChemSusChem, 12(3), 556-576. doi:10.1002/cssc.201801959

Chen, J., Liang, T., Li, J., Wang, S., Qin, Z., Wang, P., … Wang, J. (2016). Regulation of Framework Aluminum Siting and Acid Distribution in H-MCM-22 by Boron Incorporation and Its Effect on the Catalytic Performance in Methanol to Hydrocarbons. ACS Catalysis, 6(4), 2299-2313. doi:10.1021/acscatal.5b02862

Pinar, A. B., Márquez-Álvarez, C., Grande-Casas, M., & Pérez-Pariente, J. (2009). Template-controlled acidity and catalytic activity of ferrierite crystals. Journal of Catalysis, 263(2), 258-265. doi:10.1016/j.jcat.2009.02.017

Pinar, A. B., Gómez-Hortigüela, L., McCusker, L. B., & Pérez-Pariente, J. (2013). Controlling the Aluminum Distribution in the Zeolite Ferrierite via the Organic Structure Directing Agent. Chemistry of Materials, 25(18), 3654-3661. doi:10.1021/cm4018024

Román-Leshkov, Y., Moliner, M., & Davis, M. E. (2010). Impact of Controlling the Site Distribution of Al Atoms on Catalytic Properties in Ferrierite-Type Zeolites. The Journal of Physical Chemistry C, 115(4), 1096-1102. doi:10.1021/jp106247g

Biligetu, T., Wang, Y., Nishitoba, T., Otomo, R., Park, S., Mochizuki, H., … Yokoi, T. (2017). Al distribution and catalytic performance of ZSM-5 zeolites synthesized with various alcohols. Journal of Catalysis, 353, 1-10. doi:10.1016/j.jcat.2017.06.026

Gallego, E. M., Li, C., Paris, C., Martín, N., Martínez-Triguero, J., Boronat, M., … Corma, A. (2018). Making Nanosized CHA Zeolites with Controlled Al Distribution for Optimizing Methanol-to-Olefin Performance. Chemistry - A European Journal, 24(55), 14631-14635. doi:10.1002/chem.201803637

Li, C., Vidal-Moya, A., Miguel, P. J., Dedecek, J., Boronat, M., & Corma, A. (2018). Selective Introduction of Acid Sites in Different Confined Positions in ZSM-5 and Its Catalytic Implications. ACS Catalysis, 8(8), 7688-7697. doi:10.1021/acscatal.8b02112

Yokoi, T., Mochizuki, H., Namba, S., Kondo, J. N., & Tatsumi, T. (2015). Control of the Al Distribution in the Framework of ZSM-5 Zeolite and Its Evaluation by Solid-State NMR Technique and Catalytic Properties. The Journal of Physical Chemistry C, 119(27), 15303-15315. doi:10.1021/acs.jpcc.5b03289

Di Iorio, J. R., & Gounder, R. (2016). Controlling the Isolation and Pairing of Aluminum in Chabazite Zeolites Using Mixtures of Organic and Inorganic Structure-Directing Agents. Chemistry of Materials, 28(7), 2236-2247. doi:10.1021/acs.chemmater.6b00181

Sarazen, M. L., Doskocil, E., & Iglesia, E. (2016). Catalysis on solid acids: Mechanism and catalyst descriptors in oligomerization reactions of light alkenes. Journal of Catalysis, 344, 553-569. doi:10.1016/j.jcat.2016.10.010

Jones, A. J., Carr, R. T., Zones, S. I., & Iglesia, E. (2014). Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms. Journal of Catalysis, 312, 58-68. doi:10.1016/j.jcat.2014.01.007

Kester, P. M., Miller, J. T., & Gounder, R. (2018). Ammonia Titration Methods To Quantify Brønsted Acid Sites in Zeolites Substituted with Aluminum and Boron Heteroatoms. Industrial & Engineering Chemistry Research, 57(19), 6673-6683. doi:10.1021/acs.iecr.8b00933

Liang, T., Chen, J., Qin, Z., Li, J., Wang, P., Wang, S., … Wang, J. (2016). Conversion of Methanol to Olefins over H-ZSM-5 Zeolite: Reaction Pathway Is Related to the Framework Aluminum Siting. ACS Catalysis, 6(11), 7311-7325. doi:10.1021/acscatal.6b01771

Márquez-Alvarez, C., Pinar, A. B., García, R., Grande-Casas, M., & Pérez-Pariente, J. (2009). Influence of Al Distribution and Defects Concentration of Ferrierite Catalysts Synthesized From Na-Free Gels in the Skeletal Isomerization of n-Butene. Topics in Catalysis, 52(9), 1281-1291. doi:10.1007/s11244-009-9273-6

Gallego, E. M., Portilla, M. T., Paris, C., León-Escamilla, A., Boronat, M., Moliner, M., & Corma, A. (2017). «Ab initio» synthesis of zeolites for preestablished catalytic reactions. Science, 355(6329), 1051-1054. doi:10.1126/science.aal0121

Li, C., Paris, C., Martínez-Triguero, J., Boronat, M., Moliner, M., & Corma, A. (2018). Synthesis of reaction‐adapted zeolites as methanol-to-olefins catalysts with mimics of reaction intermediates as organic structure‐directing agents. Nature Catalysis, 1(7), 547-554. doi:10.1038/s41929-018-0104-7

Corma, A., Nemeth, L. T., Renz, M., & Valencia, S. (2001). Sn-zeolite beta as a heterogeneous chemoselective catalyst for Baeyer–Villiger oxidations. Nature, 412(6845), 423-425. doi:10.1038/35086546

Boronat, M., Corma, A., & Renz, M. (2006). Mechanism of the Meerwein−Ponndorf−Verley−Oppenauer (MPVO) Redox Equilibrium on Sn− and Zr−Beta Zeolite Catalysts. The Journal of Physical Chemistry B, 110(42), 21168-21174. doi:10.1021/jp063249x

Corma, A., Iborra, S., & Velty, A. (2007). Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews, 107(6), 2411-2502. doi:10.1021/cr050989d

Román-Leshkov, Y., & Davis, M. E. (2011). Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media. ACS Catalysis, 1(11), 1566-1580. doi:10.1021/cs200411d

Moliner, M. (2014). State of the art of Lewis acid-containing zeolites: lessons from fine chemistry to new biomass transformation processes. Dalton Trans., 43(11), 4197-4208. doi:10.1039/c3dt52293h

Corma, A., & Renz, M. (2004). Sn-Beta zeolite as diastereoselective water-resistant heterogeneous Lewis-acid catalyst for carbon–carbon bond formation in the intramolecular carbonyl–ene reaction. Chem. Commun., (5), 550-551. doi:10.1039/b313738d

De la Torre, O., Renz, M., & Corma, A. (2010). Biomass to chemicals: Rearrangement of β-pinene epoxide into myrtanal with well-defined single-site substituted molecular sieves as reusable solid Lewis-acid catalysts. Applied Catalysis A: General, 380(1-2), 165-171. doi:10.1016/j.apcata.2010.03.056

Román-Leshkov, Y., Moliner, M., Labinger, J. A., & Davis, M. E. (2010). Mechanism of Glucose Isomerization Using a Solid Lewis Acid Catalyst in Water. Angewandte Chemie International Edition, 49(47), 8954-8957. doi:10.1002/anie.201004689

Gunther, W. R., Wang, Y., Ji, Y., Michaelis, V. K., Hunt, S. T., Griffin, R. G., & Román-Leshkov, Y. (2012). Sn-Beta zeolites with borate salts catalyse the epimerization of carbohydrates via an intramolecular carbon shift. Nature Communications, 3(1). doi:10.1038/ncomms2122

Dijkmans, J., Schutyser, W., Dusselier, M., & Sels, B. F. (2016). Snβ-zeolite catalyzed oxido-reduction cascade chemistry with biomass-derived molecules. Chemical Communications, 52(40), 6712-6715. doi:10.1039/c6cc00199h

Gounder, R., & Davis, M. E. (2013). Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves. Journal of Catalysis, 308, 176-188. doi:10.1016/j.jcat.2013.06.016

Camblor, M. A., Corma, A., & Valencia, S. (1996). Spontaneous nucleation and growth of pure silica zeolite-? free of connectivity defects. Chemical Communications, (20), 2365. doi:10.1039/cc9960002365

Martínez-Franco, R., Paris, C., Martínez-Armero, M. E., Martínez, C., Moliner, M., & Corma, A. (2016). High-silica nanocrystalline Beta zeolites: efficient synthesis and catalytic application. Chemical Science, 7(1), 102-108. doi:10.1039/c5sc03019f

Treacy, M. M. J., & Newsam, J. M. (1988). Two new three-dimensional twelve-ring zeolite frameworks of which zeolite beta is a disordered intergrowth. Nature, 332(6161), 249-251. doi:10.1038/332249a0

Bare, S. R., Kelly, S. D., Sinkler, W., Low, J. J., Modica, F. S., Valencia, S., … Nemeth, L. T. (2005). Uniform Catalytic Site in Sn-β-Zeolite Determined Using X-ray Absorption Fine Structure. Journal of the American Chemical Society, 127(37), 12924-12932. doi:10.1021/ja052543k

Lewis, J. D., Ha, M., Luo, H., Faucher, A., Michaelis, V. K., & Román-Leshkov, Y. (2018). Distinguishing Active Site Identity in Sn-Beta Zeolites Using 31P MAS NMR of Adsorbed Trimethylphosphine Oxide. ACS Catalysis, 8(4), 3076-3086. doi:10.1021/acscatal.7b03533

BORONAT, M., CONCEPCION, P., CORMA, A., RENZ, M., & VALENCIA, S. (2005). Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies. Journal of Catalysis, 234(1), 111-118. doi:10.1016/j.jcat.2005.05.023

Bates, J. S., Bukowski, B. C., Harris, J. W., Greeley, J., & Gounder, R. (2019). Distinct Catalytic Reactivity of Sn Substituted in Framework Locations and at Defect Grain Boundaries in Sn-Zeolites. ACS Catalysis, 9(7), 6146-6168. doi:10.1021/acscatal.9b01123

Harris, J. W., Cordon, M. J., Di Iorio, J. R., Vega-Vila, J. C., Ribeiro, F. H., & Gounder, R. (2016). Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization. Journal of Catalysis, 335, 141-154. doi:10.1016/j.jcat.2015.12.024

Structural characterization of zeolite beta. (1988). Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 420(1859), 375-405. doi:10.1098/rspa.1988.0131

Wright, P. A., Zhou, W., Pérez-Pariente, J., & Arranz, M. (2004). Direct Observation of Growth Defects in Zeolite Beta. Journal of the American Chemical Society, 127(2), 494-495. doi:10.1021/ja043948s

Corma, A., Navarro, M. T., Rey, F., Rius, J., & Valencia, S. (2001). Pure Polymorph C of Zeolite Beta Synthesized by Using Framework Isomorphous Substitution as a Structure-Directing Mechanism. Angewandte Chemie International Edition, 40(12), 2277-2280. doi:10.1002/1521-3773(20010618)40:12<2277::aid-anie2277>3.0.co;2-o

Sastre, G., Vidal-Moya, J. A., Blasco, T., Rius, J., Jordá, J. L., Navarro, M. T., … Corma, A. (2002). Preferential Location of Ge Atoms in Polymorph C of Beta Zeolite (ITQ-17) and Their Structure-Directing Effect: A Computational, XRD, and NMR Spectroscopic Study. Angewandte Chemie International Edition, 41(24), 4722-4726. doi:10.1002/anie.200290028

Zhang, G., Feng, P., Zhang, W., Liu, H., Wang, C., Ma, H., … Tian, Z. (2017). Single isomerization selectivity of glucose in methanol over Sn-BEC zeolite of homogenous Sn distribution. Microporous and Mesoporous Materials, 247, 158-165. doi:10.1016/j.micromeso.2017.03.052

Rodríguez-Fernández, A., Llopis, F. J., Martínez, C., Moliner, M., & Corma, A. (2018). Increasing the stability of the Ge-containing extra-large pore ITQ-33 zeolite by post-synthetic acid treatments. Microporous and Mesoporous Materials, 267, 35-42. doi:10.1016/j.micromeso.2018.03.006

Eliášová, P., Opanasenko, M., Wheatley, P. S., Shamzhy, M., Mazur, M., Nachtigall, P., … Čejka, J. (2015). The ADOR mechanism for the synthesis of new zeolites. Chemical Society Reviews, 44(20), 7177-7206. doi:10.1039/c5cs00045a

Rodríguez-Fernández, A., Atienzar, P., Martínez, C., Román-Leshkov, Y., & Moliner, M. (2019). Ge-Based Hybrid Composites from Ge-Rich Zeolites as Highly Conductive and Stable Electronic Materials. Chemistry of Materials, 31(18), 7723-7731. doi:10.1021/acs.chemmater.9b02696

Moliner, M., Serna, P., Cantín, Á., Sastre, G., Díaz-Cabañas, M. J., & Corma, A. (2008). Synthesis of the Ti−Silicate Form of BEC Polymorph of β-Zeolite Assisted by Molecular Modeling. The Journal of Physical Chemistry C, 112(49), 19547-19554. doi:10.1021/jp805400u

Cantín, Á., Corma, A., Díaz-Cabañas, M. J., Jordá, J. L., Moliner, M., & Rey, F. (2006). Synthesis and Characterization of the All-Silica Pure Polymorph C and an Enriched Polymorph B Intergrowth of Zeolite Beta. Angewandte Chemie International Edition, 45(47), 8013-8015. doi:10.1002/anie.200603027

Lewis, J. D., Van de Vyver, S., & Román‐Leshkov, Y. (2015). Acid–Base Pairs in Lewis Acidic Zeolites Promote Direct Aldol Reactions by Soft Enolization. Angewandte Chemie International Edition, 54(34), 9835-9838. doi:10.1002/anie.201502939

Bermejo-Deval, R., Orazov, M., Gounder, R., Hwang, S.-J., & Davis, M. E. (2014). Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose. ACS Catalysis, 4(7), 2288-2297. doi:10.1021/cs500466j

Zhao, Y., & Truhlar, D. G. (2008). The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06 functionals and 12 other functionals. Theoretical Chemistry Accounts, 119(5-6), 525-525. doi:10.1007/s00214-007-0401-8

Ditchfield, R., Hehre, W. J., & Pople, J. A. (1971). Self‐Consistent Molecular‐Orbital Methods. IX. An Extended Gaussian‐Type Basis for Molecular‐Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 54(2), 724-728. doi:10.1063/1.1674902

Hehre, W. J., Ditchfield, R., & Pople, J. A. (1972). Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules. The Journal of Chemical Physics, 56(5), 2257-2261. doi:10.1063/1.1677527

Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82(1), 270-283. doi:10.1063/1.448799

Hay, P. J., & Wadt, W. R. (1985). Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. The Journal of Chemical Physics, 82(1), 299-310. doi:10.1063/1.448975

Ditchfield, R. (1974). Self-consistent perturbation theory of diamagnetism. Molecular Physics, 27(4), 789-807. doi:10.1080/00268977400100711

Wolinski, K., Hinton, J. F., & Pulay, P. (1990). Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations. Journal of the American Chemical Society, 112(23), 8251-8260. doi:10.1021/ja00179a005

McLean, A. D., & Chandler, G. S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18. The Journal of Chemical Physics, 72(10), 5639-5648. doi:10.1063/1.438980

Moliner, M., Roman-Leshkov, Y., & Davis, M. E. (2010). Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water. Proceedings of the National Academy of Sciences, 107(14), 6164-6168. doi:10.1073/pnas.1002358107

Zheng, A., Liu, S.-B., & Deng, F. (2017). 31P NMR Chemical Shifts of Phosphorus Probes as Reliable and Practical Acidity Scales for Solid and Liquid Catalysts. Chemical Reviews, 117(19), 12475-12531. doi:10.1021/acs.chemrev.7b00289

Luo, H. Y., Consoli, D. F., Gunther, W. R., & Román-Leshkov, Y. (2014). Investigation of the reaction kinetics of isolated Lewis acid sites in Beta zeolites for the Meerwein–Ponndorf–Verley reduction of methyl levulinate to γ-valerolactone. Journal of Catalysis, 320, 198-207. doi:10.1016/j.jcat.2014.10.010

Harris, J. W., Bates, J. S., Bukowski, B. C., Greeley, J., & Gounder, R. (2020). Opportunities in Catalysis over Metal-Zeotypes Enabled by Descriptions of Active Centers Beyond Their Binding Site. ACS Catalysis, 10(16), 9476-9495. doi:10.1021/acscatal.0c02102

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem