- -

Zeolite-Assisted Lignin-First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shape-Selective Catalysis

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Zeolite-Assisted Lignin-First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shape-Selective Catalysis

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Subbotina, Elena es_ES
dc.contributor.author Velty, Alexandra es_ES
dc.contributor.author Samec, Joseph S. M. es_ES
dc.contributor.author Corma Canós, Avelino es_ES
dc.date.accessioned 2021-04-22T03:31:37Z
dc.date.available 2021-04-22T03:31:37Z
dc.date.issued 2020-09-07 es_ES
dc.identifier.issn 1864-5631 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165485
dc.description This is the peer reviewed version of the following article: E. Subbotina, A. Velty, J. S. M. Samec, A. Corma, ChemSusChem 2020, 13, 4528, which has been published in final form at https://doi.org/10.1002/cssc.202000330. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving. es_ES
dc.description.abstract [EN] Organosolv pulping releases reactive monomers from both lignin and hemicellulose by the cleavage of weak C-O bonds. These monomers recombine to form undesired polymers through the formation of recalcitrant C-C bonds. Different strategies have been developed to prevent this process by stabilizing the reactive monomers (i.e., lignin-first approaches). To date, all reported approaches rely on the addition of capping agents or metal-catalyzed stabilization reactions, which usually require high pressures of hydrogen gas. Herein, a metal- and additive-free approach is reported that uses zeolites as acid catalysts to convert the reactive monomers into more stable derivatives under organosolv pulping conditions. Experiments with model lignin compounds showed that the recondensation of aldehydes and allylic alcohols produced by the cleavage of beta-O-4 ' bonds was efficiently inhibited by the use of protonic beta zeolite. By applying a zeolite with a preferred pore size, the bimolecular reactions of reactive monomers were effectively inhibited, resulting in stable and valuable monophenolics. The developed methodology was further extended to birch wood to yield monophenolic compounds and value-added products from carbohydrates. es_ES
dc.description.sponsorship This work was supported by the Swedish Energy Agency, Stiftelsen Olle Engkvist Byggm~stare, and the European Union through ERC-AdG-2014-671093-SynCatMatch. es_ES
dc.language Inglés es_ES
dc.publisher John Wiley & Sons es_ES
dc.relation.ispartof ChemSusChem es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Biomass es_ES
dc.subject Depolymerization es_ES
dc.subject Heterogeneous catalysis es_ES
dc.subject Lignin es_ES
dc.subject Zeolites es_ES
dc.subject.classification QUIMICA ORGANICA es_ES
dc.title Zeolite-Assisted Lignin-First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shape-Selective Catalysis es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1002/cssc.202000330 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/671093/EU/MATching zeolite SYNthesis with CATalytic activity/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Química - Departament de Química es_ES
dc.description.bibliographicCitation Subbotina, E.; Velty, A.; Samec, JSM.; Corma Canós, A. (2020). Zeolite-Assisted Lignin-First Fractionation of Lignocellulose: Overcoming Lignin Recondensation through Shape-Selective Catalysis. ChemSusChem. 13(17):4528-4536. https://doi.org/10.1002/cssc.202000330 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1002/cssc.202000330 es_ES
dc.description.upvformatpinicio 4528 es_ES
dc.description.upvformatpfin 4536 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 13 es_ES
dc.description.issue 17 es_ES
dc.identifier.pmid 32281748 es_ES
dc.relation.pasarela S\431832 es_ES
dc.contributor.funder Swedish Energy Agency es_ES
dc.contributor.funder Swedish Research Council es_ES
dc.contributor.funder European Research Council es_ES
dc.description.references Adler, E. (1977). Lignin chemistry?past, present and future. Wood Science and Technology, 11(3), 169-218. doi:10.1007/bf00365615 es_ES
dc.description.references Galkin, M. V., & Samec, J. S. M. (2016). Lignin Valorization through Catalytic Lignocellulose Fractionation: A Fundamental Platform for the Future Biorefinery. ChemSusChem, 9(13), 1544-1558. doi:10.1002/cssc.201600237 es_ES
dc.description.references Schutyser, W., Renders, T., Van den Bosch, S., Koelewijn, S.-F., Beckham, G. T., & Sels, B. F. (2018). Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chemical Society Reviews, 47(3), 852-908. doi:10.1039/c7cs00566k es_ES
dc.description.references Sun, Z., Fridrich, B., de Santi, A., Elangovan, S., & Barta, K. (2018). Bright Side of Lignin Depolymerization: Toward New Platform Chemicals. Chemical Reviews, 118(2), 614-678. doi:10.1021/acs.chemrev.7b00588 es_ES
dc.description.references Sturgeon, M. R., Kim, S., Lawrence, K., Paton, R. S., Chmely, S. C., Nimlos, M., … Beckham, G. T. (2013). A Mechanistic Investigation of Acid-Catalyzed Cleavage of Aryl-Ether Linkages: Implications for Lignin Depolymerization in Acidic Environments. ACS Sustainable Chemistry & Engineering, 2(3), 472-485. doi:10.1021/sc400384w es_ES
dc.description.references Shuai, L., Amiri, M. T., Questell-Santiago, Y. M., Héroguel, F., Li, Y., Kim, H., … Luterbacher, J. S. (2016). Formaldehyde stabilization facilitates lignin monomer production during biomass depolymerization. Science, 354(6310), 329-333. doi:10.1126/science.aaf7810 es_ES
dc.description.references Questell-Santiago, Y. M., Zambrano-Varela, R., Talebi Amiri, M., & Luterbacher, J. S. (2018). Carbohydrate stabilization extends the kinetic limits of chemical polysaccharide depolymerization. Nature Chemistry, 10(12), 1222-1228. doi:10.1038/s41557-018-0134-4 es_ES
dc.description.references Deuss, P. J., Scott, M., Tran, F., Westwood, N. J., de Vries, J. G., & Barta, K. (2015). Aromatic Monomers by in Situ Conversion of Reactive Intermediates in the Acid-Catalyzed Depolymerization of Lignin. Journal of the American Chemical Society, 137(23), 7456-7467. doi:10.1021/jacs.5b03693 es_ES
dc.description.references Lahive, C. W., Deuss, P. J., Lancefield, C. S., Sun, Z., Cordes, D. B., Young, C. M., … Barta, K. (2016). Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent. Journal of the American Chemical Society, 138(28), 8900-8911. doi:10.1021/jacs.6b04144 es_ES
dc.description.references Barta, K., & Ford, P. C. (2014). Catalytic Conversion of Nonfood Woody Biomass Solids to Organic Liquids. Accounts of Chemical Research, 47(5), 1503-1512. doi:10.1021/ar4002894 es_ES
dc.description.references Deuss, P. J., Lahive, C. W., Lancefield, C. S., Westwood, N. J., Kamer, P. C. J., Barta, K., & de Vries, J. G. (2016). Metal Triflates for the Production of Aromatics from Lignin. ChemSusChem, 9(20), 2974-2981. doi:10.1002/cssc.201600831 es_ES
dc.description.references Kaiho, A., Kogo, M., Sakai, R., Saito, K., & Watanabe, T. (2015). In situ trapping of enol intermediates with alcohol during acid-catalysed de-polymerisation of lignin in a nonpolar solvent. Green Chemistry, 17(5), 2780-2783. doi:10.1039/c5gc00130g es_ES
dc.description.references Jastrzebski, R., Constant, S., Lancefield, C. S., Westwood, N. J., Weckhuysen, B. M., & Bruijnincx, P. C. A. (2016). Tandem Catalytic Depolymerization of Lignin by Water-Tolerant Lewis Acids and Rhodium Complexes. ChemSusChem, 9(16), 2074-2079. doi:10.1002/cssc.201600683 es_ES
dc.description.references Zhang, L., Xi, G., Yu, K., Yu, H., & Wang, X. (2017). Furfural production from biomass–derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts. Industrial Crops and Products, 98, 68-75. doi:10.1016/j.indcrop.2017.01.014 es_ES
dc.description.references Anderson, E. M., Stone, M. L., Katahira, R., Reed, M., Beckham, G. T., & Román-Leshkov, Y. (2017). Flowthrough Reductive Catalytic Fractionation of Biomass. Joule, 1(3), 613-622. doi:10.1016/j.joule.2017.10.004 es_ES
dc.description.references Kumaniaev, I., Subbotina, E., Sävmarker, J., Larhed, M., Galkin, M. V., & Samec, J. S. M. (2017). Lignin depolymerization to monophenolic compounds in a flow-through system. Green Chemistry, 19(24), 5767-5771. doi:10.1039/c7gc02731a es_ES
dc.description.references Van den Bosch, S., Renders, T., Kennis, S., Koelewijn, S.-F., Van den Bossche, G., Vangeel, T., … Sels, B. F. (2017). Integrating lignin valorization and bio-ethanol production: on the role of Ni-Al2O3catalyst pellets during lignin-first fractionation. Green Chemistry, 19(14), 3313-3326. doi:10.1039/c7gc01324h es_ES
dc.description.references Dusselier, M., Van Wouwe, P., Dewaele, A., Jacobs, P. A., & Sels, B. F. (2015). Shape-selective zeolite catalysis for bioplastics production. Science, 349(6243), 78-80. doi:10.1126/science.aaa7169 es_ES
dc.description.references Zhang, L., Xi, G., Chen, Z., Jiang, D., Yu, H., & Wang, X. (2017). Highly selective conversion of glucose into furfural over modified zeolites. Chemical Engineering Journal, 307, 868-876. doi:10.1016/j.cej.2016.09.001 es_ES
dc.description.references Cui, J., Tan, J., Deng, T., Cui, X., Zhu, Y., & Li, Y. (2016). Conversion of carbohydrates to furfural via selective cleavage of the carbon–carbon bond: the cooperative effects of zeolite and solvent. Green Chemistry, 18(6), 1619-1624. doi:10.1039/c5gc01948f es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem