- -

Salt slag recycled by-products in high insulation geopolymer cellular concrete manufacturing

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Salt slag recycled by-products in high insulation geopolymer cellular concrete manufacturing

Mostrar el registro completo del ítem

Font-Pérez, A.; Soriano Martinez, L.; Monzó Balbuena, JM.; Moraes, J.; Borrachero Rosado, MV.; Paya Bernabeu, JJ. (2020). Salt slag recycled by-products in high insulation geopolymer cellular concrete manufacturing. Construction and Building Materials. 231:1-13. https://doi.org/10.1016/j.conbuildmat.2019.117114

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10251/165519

Ficheros en el ítem

Metadatos del ítem

Título: Salt slag recycled by-products in high insulation geopolymer cellular concrete manufacturing
Autor: Font-Pérez, Alba Soriano Martinez, Lourdes Monzó Balbuena, José Mª Moraes, J.C.B. Borrachero Rosado, María Victoria Paya Bernabeu, Jorge Juan
Entidad UPV: Universitat Politècnica de València. Departamento de Ingeniería de la Construcción y de Proyectos de Ingeniería Civil - Departament d'Enginyeria de la Construcció i de Projectes d'Enginyeria Civil
Fecha difusión:
Resumen:
[EN] This investigation presents an important contribution to the understanding of the ¿zero discharge in the aluminium cycle¿ goal. The salt slag recycled by-product was reused as alternative aerating agent in the manufacture ...[+]
Palabras clave: Aluminium salt slag recycled by-product , Cellular concrete , Geopolymer , Alkali-activation , Thermal insulation , Waste valorisation
Derechos de uso: Reconocimiento - No comercial - Sin obra derivada (by-nc-nd)
Fuente:
Construction and Building Materials. (issn: 0950-0618 )
DOI: 10.1016/j.conbuildmat.2019.117114
Editorial:
Elsevier
Versión del editor: https://doi.org/10.1016/j.conbuildmat.2019.117114
Código del Proyecto:
info:eu-repo/grantAgreement/MINECO//BIA2015-70107-R/ES/APLICACIONES DE SISTEMAS GEOPOLIMERICOS OBTENIDOS A PARTIR DE MEZCLAS DE RESIDUOS: MORTEROS,HORMIGONES Y ESTABILIZACION DE SUELOS/
Agradecimientos:
The authors give special grateful to Befesa Aluminio S.L (Valladolid, Spain) for the granulated paval supply. The authors would also thanks to Cementval and BPOil for precursors supplying. Thanks are given to the Electron ...[+]
Tipo: Artículo

References

Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601-605. doi:10.1016/j.cemconcomp.2008.12.010

Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. doi:10.1016/j.cemconcomp.2014.03.005

Panesar, D. K. (2013). Cellular concrete properties and the effect of synthetic and protein foaming agents. Construction and Building Materials, 44, 575-584. doi:10.1016/j.conbuildmat.2013.03.024 [+]
Meyer, C. (2009). The greening of the concrete industry. Cement and Concrete Composites, 31(8), 601-605. doi:10.1016/j.cemconcomp.2008.12.010

Petek Gursel, A., Masanet, E., Horvath, A., & Stadel, A. (2014). Life-cycle inventory analysis of concrete production: A critical review. Cement and Concrete Composites, 51, 38-48. doi:10.1016/j.cemconcomp.2014.03.005

Panesar, D. K. (2013). Cellular concrete properties and the effect of synthetic and protein foaming agents. Construction and Building Materials, 44, 575-584. doi:10.1016/j.conbuildmat.2013.03.024

B. Dolton, C. Hannah, Cellular Concrete : Engineering and Technological Advancement for Construction in Cold Climates, (2006) 1–11.

Narayanan, N., & Ramamurthy, K. (2000). Structure and properties of aerated concrete: a review. Cement and Concrete Composites, 22(5), 321-329. doi:10.1016/s0958-9465(00)00016-0

Holt, E., & Raivio, P. (2005). Use of gasification residues in aerated autoclaved concrete. Cement and Concrete Research, 35(4), 796-802. doi:10.1016/j.cemconres.2004.05.005

Mo, K. H., Alengaram, U. J., Jumaat, M. Z., Yap, S. P., & Lee, S. C. (2016). Green concrete partially comprised of farming waste residues: a review. Journal of Cleaner Production, 117, 122-138. doi:10.1016/j.jclepro.2016.01.022

Luukkonen, T., Abdollahnejad, Z., Yliniemi, J., Kinnunen, P., & Illikainen, M. (2018). One-part alkali-activated materials: A review. Cement and Concrete Research, 103, 21-34. doi:10.1016/j.cemconres.2017.10.001

Duxson, P., Provis, J. L., Lukey, G. C., & van Deventer, J. S. J. (2007). The role of inorganic polymer technology in the development of ‘green concrete’. Cement and Concrete Research, 37(12), 1590-1597. doi:10.1016/j.cemconres.2007.08.018

Ducman, V., & Korat, L. (2016). Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Materials Characterization, 113, 207-213. doi:10.1016/j.matchar.2016.01.019

Esmaily, H., & Nuranian, H. (2012). Non-autoclaved high strength cellular concrete from alkali activated slag. Construction and Building Materials, 26(1), 200-206. doi:10.1016/j.conbuildmat.2011.06.010

Font, A., Borrachero, M. V., Soriano, L., Monzó, J., & Payá, J. (2017). Geopolymer eco-cellular concrete (GECC) based on fluid catalytic cracking catalyst residue (FCC) with addition of recycled aluminium foil powder. Journal of Cleaner Production, 168, 1120-1131. doi:10.1016/j.jclepro.2017.09.110

Font, A., Borrachero, M. V., Soriano, L., Monzó, J., Mellado, A., & Payá, J. (2018). New eco-cellular concretes: sustainable and energy-efficient materials. Green Chemistry, 20(20), 4684-4694. doi:10.1039/c8gc02066c

Arellano Aguilar, R., Burciaga Díaz, O., & Escalante García, J. I. (2010). Lightweight concretes of activated metakaolin-fly ash binders, with blast furnace slag aggregates. Construction and Building Materials, 24(7), 1166-1175. doi:10.1016/j.conbuildmat.2009.12.024

RLG International cementreview, (n.d.).

World Aluminium, Environmental Metrics Report Year 2010 Data Final, (2014) 21.

Hong, S.-H., Lee, D.-W., & Kim, B.-K. (2000). Manufacturing of aluminum flake powder from foil scrap by dry ball milling process. Journal of Materials Processing Technology, 100(1-3), 105-109. doi:10.1016/s0924-0136(99)00469-0

A. Al Ashraf, Energy Consumption and the CO2 footprint in aluminium production, (2014).

Befesa :: Press :: News archive :: 2013, (n.d.). http://www.befesa.es/web/en/prensa/historico_de_noticias/2013/bma_20130307.html (accessed April 15, 2018).

Araújo, E. G. de, & Tenório, J. A. S. (2005). Cellular Concrete with Addition of Aluminum Recycled Foil Powders. Materials Science Forum, 498-499, 198-204. doi:10.4028/www.scientific.net/msf.498-499.198

Song, Y., Li, B., Yang, E.-H., Liu, Y., & Ding, T. (2015). Feasibility study on utilization of municipal solid waste incineration bottom ash as aerating agent for the production of autoclaved aerated concrete. Cement and Concrete Composites, 56, 51-58. doi:10.1016/j.cemconcomp.2014.11.006

Moraes, J. C. B., Tashima, M. M., Akasaki, J. L., Melges, J. L. P., Monzó, J., Borrachero, M. V., … Payá, J. (2016). Increasing the sustainability of alkali-activated binders: The use of sugar cane straw ash (SCSA). Construction and Building Materials, 124, 148-154. doi:10.1016/j.conbuildmat.2016.07.090

N.E. En, N. Une-en, española, (2005).

F. Babbitt, R.E. Barnett, M.L. Cornelius, B.T. Dye, D.L. Liotti, S.B. Schmidt, J.E. Tanner, S.C. Valentini, ACI 523.3R-14 Guide for Cellular Concretes above 50 lb/ft3 (800 kg/m3), 2014.

ASTM International, ASTM D5334 – 14 Standard Test Method for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure, (n.d.).

IEEE 442-1981 – IEEE Guide for Soil Thermal Resistivity Measurements, (n.d.).

D.R. van Boggelen, Safe aluminium dosing in AAC plants, 5th Int. Conf. Autoclaved Aerated Concr. (2011) 45–50.

Porciúncula, C. B., Marcilio, N. R., Tessaro, I. C., & Gerchmann, M. (2012). Production of hydrogen in the reaction between aluminum and water in the presence of NaOH and KOH. Brazilian Journal of Chemical Engineering, 29(2), 337-348. doi:10.1590/s0104-66322012000200014

Aleksandrov, Y. A., Tsyganova, E. I., & Pisarev, A. L. (2003). Russian Journal of General Chemistry, 73(5), 689-694. doi:10.1023/a:1026114331597

Yang, K.-H., Lee, K.-H., Song, J.-K., & Gong, M.-H. (2014). Properties and sustainability of alkali-activated slag foamed concrete. Journal of Cleaner Production, 68, 226-233. doi:10.1016/j.jclepro.2013.12.068

Sanjayan, J. G., Nazari, A., Chen, L., & Nguyen, G. H. (2015). Physical and mechanical properties of lightweight aerated geopolymer. Construction and Building Materials, 79, 236-244. doi:10.1016/j.conbuildmat.2015.01.043

Nambiar, E. K. K., & Ramamurthy, K. (2007). Air‐void characterisation of foam concrete. Cement and Concrete Research, 37(2), 221-230. doi:10.1016/j.cemconres.2006.10.009

Narayanan, N., & Ramamurthy, K. (2000). Microstructural investigations on aerated concrete. Cement and Concrete Research, 30(3), 457-464. doi:10.1016/s0008-8846(00)00199-x

Alexanderson, J. (1979). Relations between structure and mechanical properties of autoclaved aerated concrete. Cement and Concrete Research, 9(4), 507-514. doi:10.1016/0008-8846(79)90049-8

[-]

recommendations

 

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro completo del ítem