- -

Impact of embryo technologies on secondary sex ratio in rabbit

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Impact of embryo technologies on secondary sex ratio in rabbit

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Garcia-Dominguez, X es_ES
dc.contributor.author Juarez, Jorge D. es_ES
dc.contributor.author Vicente Antón, José Salvador es_ES
dc.contributor.author Marco-Jiménez, Francisco es_ES
dc.date.accessioned 2021-04-23T03:31:52Z
dc.date.available 2021-04-23T03:31:52Z
dc.date.issued 2020-12 es_ES
dc.identifier.issn 0011-2240 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165523
dc.description.abstract [EN] Increasing evidence indicates that assisted reproductive technologies (ARTs) disturb skewed sex-ratio and induce sex-dimorphic postnatal effects. Undoubtedly, the combination of multiple ovulation and embryo transfer (MOET) together with the use of vitrification technique (MOVET) is currently being used in breeding programs. However, since the first case of sex skewing reported in 1991, the accumulative and long-term transmission of skewed sex-ratio to future generations has not been thoroughly evaluated. Here we test as MOVET program induce a skewed sex ratio, and we consider skewed sex ratio transmission to future generations. To this end, we first evaluated the F1 generation, demonstrating that a MOVET program causes a severe imbalance skewed secondary sex ratio (SSR) towards male by 12%. This imbalanced persist after a second MOVET program (F2 generation), with an accumulative skewed SSR towards male by 25%. Finally, using a crossbred generation derived from crossing F1 males derived from a MOVET program with naturally-conceived (NC) females, we show that the imbalance skewed SRR persist. Bodyweight comparison between MOVET animals and NC counterparts revealed significant changes at birth, weaning and adulthood. However, there was a significant interaction between F2 MOVET animals and sex, demonstrating an apparent accumulative sex-dimorphic effect. At adulthood, MOVET derived males presented a lower body weight. In conclusion, we show that the MOVET program causes a direct, accumulative and long-term transmission of skewed SSR. es_ES
dc.description.sponsorship This work was supported by the Ministry of Economy, Industry and Competitiveness (Research project: AGL2017-85162-C2-1-R) is acknowledged. X. Garcia-Dominguez was supported by a research grant from the Ministry of Economy, Industry and Competitiveness (BES-2015-072429). English text version was revised by N. Macowan English Language Service. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Cryobiology es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject MOET es_ES
dc.subject Superovulation es_ES
dc.subject Vitrification es_ES
dc.subject Embryo transfer es_ES
dc.subject Sex es_ES
dc.subject Dimorphic es_ES
dc.subject.classification BIOLOGIA ANIMAL es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Impact of embryo technologies on secondary sex ratio in rabbit es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.cryobiol.2020.10.008 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//BES-2015-072429/ES/BES-2015-072429/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Garcia-Dominguez, X.; Juarez, JD.; Vicente Antón, JS.; Marco-Jiménez, F. (2020). Impact of embryo technologies on secondary sex ratio in rabbit. Cryobiology. 97:60-65. https://doi.org/10.1016/j.cryobiol.2020.10.008 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.cryobiol.2020.10.008 es_ES
dc.description.upvformatpinicio 60 es_ES
dc.description.upvformatpfin 65 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 97 es_ES
dc.identifier.pmid 33053364 es_ES
dc.relation.pasarela S\424926 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.description.references Auroux, M., Cerutti, I., Ducot, B., & Loeuillet, A. (2004). Is embryo-cryopreservation really neutral? Reproductive Toxicology, 18(6), 813-818. doi:10.1016/j.reprotox.2004.04.010 es_ES
dc.description.references Avery, B., Madison, V., & Greve, T. (1991). Sex and development in bovine in-vitro fertilized embryos. Theriogenology, 35(5), 953-963. doi:10.1016/0093-691x(91)90306-x es_ES
dc.description.references Bermejo-Alvarez, P., Rizos, D., Rath, D., Lonergan, P., & Gutierrez-Adan, A. (2010). Sex determines the expression level of one third of the actively expressed genes in bovine blastocysts. Proceedings of the National Academy of Sciences, 107(8), 3394-3399. doi:10.1073/pnas.0913843107 es_ES
dc.description.references Bermejo-Álvarez, P., Rizos, D., Rath, D., Lonergan, P., & Gutierrez-Adan, A. (2008). Epigenetic differences between male and female bovine blastocysts produced in vitro. Physiological Genomics, 32(2), 264-272. doi:10.1152/physiolgenomics.00234.2007 es_ES
dc.description.references Bermejo-Alvarez, P., Rizos, D., Lonergan, P., & Gutierrez-Adan, A. (2011). Transcriptional sexual dimorphism during preimplantation embryo development and its consequences for developmental competence and adult health and disease. REPRODUCTION, 141(5), 563-570. doi:10.1530/rep-10-0482 es_ES
dc.description.references Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053 es_ES
dc.description.references Bu, Z., Chen, Z.-J., Huang, G., Zhang, H., Wu, Q., Ma, Y., … Sun, Y. (2014). Live Birth Sex Ratio after In Vitro Fertilization and Embryo Transfer in China - An Analysis of 121,247 Babies from 18 Centers. PLoS ONE, 9(11), e113522. doi:10.1371/journal.pone.0113522 es_ES
dc.description.references Calle, A., Fernandez-Gonzalez, R., Ramos-Ibeas, P., Laguna-Barraza, R., Perez-Cerezales, S., Bermejo-Alvarez, P., … Gutierrez-Adan, A. (2012). Long-term and transgenerational effects of in vitro culture on mouse embryos. Theriogenology, 77(4), 785-793. doi:10.1016/j.theriogenology.2011.07.016 es_ES
dc.description.references Carvalho, R. V., Del Campo, M. R., Palasz, A. T., Plante, Y., & Mapletoft, R. J. (1996). Survival rates and sex ratio of bovine IVE embryos frozen at different developmental stages on day 7. Theriogenology, 45(2), 489-498. doi:10.1016/0093-691x(95)00385-l es_ES
dc.description.references Chen, M., Du, J., Zhao, J., Lv, H., Wang, Y., Chen, X., … Ling, X. (2017). The sex ratio of singleton and twin delivery offspring in assisted reproductive technology in China. Scientific Reports, 7(1). doi:10.1038/s41598-017-06152-9 es_ES
dc.description.references Donjacour, A., Liu, X., Lin, W., Simbulan, R., & Rinaudo, P. F. (2014). In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1. Biology of Reproduction, 90(4). doi:10.1095/biolreprod.113.113134 es_ES
dc.description.references Dulioust, E., Toyama, K., Busnel, M. C., Moutier, R., Carlier, M., Marchaland, C., … Auroux, M. (1995). Long-term effects of embryo freezing in mice. Proceedings of the National Academy of Sciences, 92(2), 589-593. doi:10.1073/pnas.92.2.589 es_ES
dc.description.references Feuer, S. K., Donjacour, A., Simbulan, R. K., Lin, W., Liu, X., Maltepe, E., & Rinaudo, P. F. (2014). Sexually Dimorphic Effect of In Vitro Fertilization (IVF) on Adult Mouse Fat and Liver Metabolomes. Endocrinology, 155(11), 4554-4567. doi:10.1210/en.2014-1465 es_ES
dc.description.references Feuer, S., & Rinaudo, P. (2016). From Embryos to Adults: A DOHaD Perspective on In Vitro Fertilization and Other Assisted Reproductive Technologies. Healthcare, 4(3), 51. doi:10.3390/healthcare4030051 es_ES
dc.description.references Feuer, S. K., & Rinaudo, P. F. (2017). Physiological, metabolic and transcriptional postnatal phenotypes ofin vitrofertilization (IVF) in the mouse. Journal of Developmental Origins of Health and Disease, 8(4), 403-410. doi:10.1017/s204017441700023x es_ES
dc.description.references Fleming, T. P., Watkins, A. J., Velazquez, M. A., Mathers, J. C., Prentice, A. M., Stephenson, J., … Godfrey, K. M. (2018). Origins of lifetime health around the time of conception: causes and consequences. The Lancet, 391(10132), 1842-1852. doi:10.1016/s0140-6736(18)30312-x es_ES
dc.description.references Garcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., Diretto, G., García-Carpintero, V., Cañizares, J., & Vicente, J. S. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports, 10(1). doi:10.1038/s41598-020-68195-9 es_ES
dc.description.references Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804 es_ES
dc.description.references Garcia-Dominguez, X., Vicente, J. S., Viudes-de-Castro, M. P., & Marco-Jiménez, F. (2020). Long-Term Effects Following Fresh/Vitrified Embryo Transfer Are Transmitted by Paternal Germline in a Large Size Rabbit Cohort. Animals, 10(8), 1272. doi:10.3390/ani10081272 es_ES
dc.description.references Gardner, D. K., Larman, M. G., & Thouas, G. A. (2010). Sex-related physiology of the preimplantation embryo. Molecular Human Reproduction, 16(8), 539-547. doi:10.1093/molehr/gaq042 es_ES
dc.description.references Gebert, C., Wrenzycki, C., Herrmann, D., Gröger, D., Thiel, J., Reinhardt, R., … Niemann, H. (2009). DNA methylation in the IGF2 intragenic DMR is re-established in a sex-specific manner in bovine blastocysts after somatic cloning. Genomics, 94(1), 63-69. doi:10.1016/j.ygeno.2009.03.004 es_ES
dc.description.references Gómez, E., Caamaño, J. N., Corrales, F. J., Díez, C., Correia-Álvarez, E., Martín, D., … Muñoz, M. (2013). Embryonic Sex Induces Differential Expression of Proteins in Bovine Uterine Fluid. Journal of Proteome Research, 12(3), 1199-1210. doi:10.1021/pr300845e es_ES
dc.description.references Gutiérrez-Adán, A., Granados, J., Pintado, B., & De La Fuente, J. (2001). Influence of glucose on the sex ratio of bovine IVM/IVF embryos cultured in vitro. Reproduction, Fertility and Development, 13(6), 361. doi:10.1071/rd00039 es_ES
dc.description.references Kobayashi, S., Isotani, A., Mise, N., Yamamoto, M., Fujihara, Y., Kaseda, K., … Okabe, M. (2006). Comparison of Gene Expression in Male and Female Mouse Blastocysts Revealed Imprinting of the X-Linked Gene, Rhox5/Pem, at Preimplantation Stages. Current Biology, 16(2), 166-172. doi:10.1016/j.cub.2005.11.071 es_ES
dc.description.references Laguna-Barraza, R., Bermejo-Álvarez, P., Ramos-Ibeas, P., de Frutos, C., López-Cardona, A. P., Calle, A., … Gutierrez-Adan, A. (2013). Sex-specific embryonic origin of postnatal phenotypic variability. Reproduction, Fertility and Development, 25(1), 38. doi:10.1071/rd12262 es_ES
dc.description.references Leibo, S. P., & Sztein, J. M. (2019). Cryopreservation of mammalian embryos: Derivation of a method. Cryobiology, 86, 1-9. doi:10.1016/j.cryobiol.2019.01.007 es_ES
dc.description.references Leme, L. O., Carvalho, J. O., Franco, M. M., & Dode, M. A. N. (2020). Effect of sex on cryotolerance of bovine embryos produced in vitro. Theriogenology, 141, 219-227. doi:10.1016/j.theriogenology.2019.05.002 es_ES
dc.description.references Lin, P.-Y., Huang, F.-J., Kung, F.-T., Wang, L.-J., Chang, S. Y., & Lan, K.-C. (2009). Comparison of the offspring sex ratio between fresh and vitrification-thawed blastocyst transfer. Fertility and Sterility, 92(5), 1764-1766. doi:10.1016/j.fertnstert.2009.05.011 es_ES
dc.description.references Litzky, J. F., Boulet, S. L., Esfandiari, N., Zhang, Y., Kissin, D. M., Theiler, R. N., & Marsit, C. J. (2018). Effect of frozen/thawed embryo transfer on birthweight, macrosomia, and low birthweight rates in US singleton infants. American Journal of Obstetrics and Gynecology, 218(4), 433.e1-433.e10. doi:10.1016/j.ajog.2017.12.223 es_ES
dc.description.references Maalouf, W. E., Mincheva, M. N., Campbell, B. K., & Hardy, I. C. W. (2014). Effects of assisted reproductive technologies on human sex ratio at birth. Fertility and Sterility, 101(5), 1321-1325. doi:10.1016/j.fertnstert.2014.01.041 es_ES
dc.description.references Martı́nez, A. ., Valcárcel, A., de las Heras, M. ., de Matos, D. ., Furnus, C., & Brogliatti, G. (2002). Vitrification of in vitro produced bovine embryos: in vitro and in vivo evaluations. Animal Reproduction Science, 73(1-2), 11-21. doi:10.1016/s0378-4320(02)00121-5 es_ES
dc.description.references Milki, A. A., Jun, S. H., Hinckley, M. D., Westphal, L. W., Giudice, L. C., & Behr, B. (2003). Journal of Assisted Reproduction and Genetics, 20(8), 323-326. doi:10.1023/a:1024861624805 es_ES
dc.description.references Muñoz, M., Gatien, J., Salvetti, P., Martín-González, D., Carrocera, S., & Gómez, E. (2020). Nuclear magnetic resonance analysis of female and male pre-hatching embryo metabolites at the embryo-maternal interface. Metabolomics, 16(4). doi:10.1007/s11306-020-01672-4 es_ES
dc.description.references Narvaez, J. L., Chang, J., Boulet, S. L., Davies, M. J., & Kissin, D. M. (2019). Trends and correlates of the sex distribution among U.S. assisted reproductive technology births. Fertility and Sterility, 112(2), 305-314. doi:10.1016/j.fertnstert.2019.03.034 es_ES
dc.description.references Nedambale, T. L., Dinnyés, A., Yang, X., & Tian, X. C. (2004). Bovine Blastocyst Development In Vitro: Timing, Sex, and Viability Following Vitrification1. Biology of Reproduction, 71(5), 1671-1676. doi:10.1095/biolreprod.104.027987 es_ES
dc.description.references Ng, K. Y. B., Mingels, R., Morgan, H., Macklon, N., & Cheong, Y. (2017). In vivo oxygen, temperature and pH dynamics in the female reproductive tract and their importance in human conception: a systematic review. Human Reproduction Update, 24(1), 15-34. doi:10.1093/humupd/dmx028 es_ES
dc.description.references Roseboom, T. J. (2018). Developmental plasticity and its relevance to assisted human reproduction. Human Reproduction, 33(4), 546-552. doi:10.1093/humrep/dey034 es_ES
dc.description.references Sparks, A. (2015). Human Embryo Cryopreservation—Methods, Timing, and other Considerations for Optimizing an Embryo Cryopreservation Program. Seminars in Reproductive Medicine, 33(02), 128-144. doi:10.1055/s-0035-1546826 es_ES
dc.description.references Supramaniam, P. R., Mittal, M., Ohuma, E. O., Lim, L. N., McVeigh, E., Granne, I., & Becker, C. M. (2019). Secondary sex ratio in assisted reproduction: an analysis of 1 376 454 treatment cycles performed in the UK. Human Reproduction Open, 2019(4). doi:10.1093/hropen/hoz020 es_ES
dc.description.references Tan, K., An, L., Miao, K., Ren, L., Hou, Z., Tao, L., … Tian, J. (2016). Impaired imprinted X chromosome inactivation is responsible for the skewed sex ratio following in vitro fertilization. Proceedings of the National Academy of Sciences, 113(12), 3197-3202. doi:10.1073/pnas.1523538113 es_ES
dc.description.references Tan, K., Wang, Z., Zhang, Z., An, L., & Tian, J. (2016). IVF affects embryonic development in a sex-biased manner in mice. REPRODUCTION, 151(4), 443-453. doi:10.1530/rep-15-0588 es_ES
dc.description.references Tarín, J. J., García-Pérez, M. A., Hermenegildo, C., & Cano, A. (2014). Changes in sex ratio from fertilization to birth in assisted-reproductive-treatment cycles. Reproductive Biology and Endocrinology, 12(1), 56. doi:10.1186/1477-7827-12-56 es_ES
dc.description.references Torner, E., Bussalleu, E., Briz, M. D., Yeste, M., & Bonet, S. (2014). Embryo development and sex ratio of in vitro-produced porcine embryos are affected by the energy substrate and hyaluronic acid added to the culture medium. Reproduction, Fertility and Development, 26(4), 570. doi:10.1071/rd13004 es_ES
dc.description.references Valdivia, R. P. A., Kunieda, T., Azuma, S., & Toyoda, Y. (1993). PCR sexing and developmental rate differences in preimplantation mouse embryos fertilized and cultured in vitro. Molecular Reproduction and Development, 35(2), 121-126. doi:10.1002/mrd.1080350204 es_ES
dc.description.references Ventura-Juncá, P., Irarrázaval, I., Rolle, A. J., Gutiérrez, J. I., Moreno, R. D., & Santos, M. J. (2015). In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biological Research, 48(1). doi:10.1186/s40659-015-0059-y es_ES
dc.description.references Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511 es_ES
dc.description.references Viudes-de-Castro, M. P., Marco-Jiménez, F., Cedano-Castro, J. I., & Vicente, J. S. (2017). Effect of corifollitropin alfa supplemented with or without LH on ovarian stimulation and embryo viability in rabbit. Theriogenology, 98, 68-74. doi:10.1016/j.theriogenology.2017.05.005 es_ES
dc.description.references Wikland, M., Hardarson, T., Hillensjo, T., Westin, C., Westlander, G., Wood, M., & Wennerholm, U. B. (2010). Obstetric outcomes after transfer of vitrified blastocysts. Human Reproduction, 25(7), 1699-1707. doi:10.1093/humrep/deq117 es_ES
dc.description.references Wrenzycki, C., Lucas-Hahn, A., Herrmann, D., Lemme, E., Korsawe, K., & Niemann, H. (2002). In Vitro Production and Nuclear Transfer Affect Dosage Compensation of the X-Linked Gene Transcripts G6PD, PGK, and Xist in Preimplantation Bovine Embryos1. Biology of Reproduction, 66(1), 127-134. doi:10.1095/biolreprod66.1.127 es_ES
dc.description.references Zacchini, F., Sampino, S., Stankiewicz, A. M., Haaf, T., & Ptak, G. E. (2019). Assessing the epigenetic risks of assisted reproductive technologies: a way forward. The International Journal of Developmental Biology, 63(3-4-5), 217-222. doi:10.1387/ijdb.180402gp es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem