- -

Electric and magnetic properties of Lanthanum Barium Cobaltite

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Electric and magnetic properties of Lanthanum Barium Cobaltite

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Szpunar, I. es_ES
dc.contributor.author Wachowski, S. es_ES
dc.contributor.author Miruszewski, T. es_ES
dc.contributor.author Dzierzgowski, K. es_ES
dc.contributor.author Gornicka, K. es_ES
dc.contributor.author Klimczuk, T. es_ES
dc.contributor.author Sorby, M. es_ES
dc.contributor.author Balaguer Ramirez, Maria es_ES
dc.contributor.author Serra Alfaro, José Manuel es_ES
dc.contributor.author Strandbakke, Ragnar es_ES
dc.contributor.author Gazda, Maria es_ES
dc.contributor.author Mielewczyk-Gryn, Aleksandra es_ES
dc.date.accessioned 2021-04-23T03:32:04Z
dc.date.available 2021-04-23T03:32:04Z
dc.date.issued 2020-03 es_ES
dc.identifier.issn 0002-7820 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165526
dc.description "This is the peer reviewed version of the following article: Szpunar, Iga, Sebastian Lech Wachowski, Tadeusz Miruszewski, Kacper Dzierzgowski, Karolina Górnicka, Tomasz Klimczuk, Magnus H. Sorby, Maria Balaguer, José M Serra, Ragnar Strandbakke, Aleksandra Dorota Mielewczyk-Gry¿, and Maria Gazda. ¿Electric and Magnetic Properties of Lanthanum Barium Cobaltite¿. JOURNAL OF THE AMERICAN CERAMIC SOCIETY 103 (2020): 1809-18. https://doi.org/10.1111/jace.16865, which has been published in final form at https://doi.org/10.1111/jace.16865. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." es_ES
dc.description.abstract [EN] The cubic Ba0.5La0.5CoO3-delta was synthesized using solid state reaction. The structural properties were determined by the simultaneous refinement of Synchrotron Powder X-ray Diffraction and Neutron Powder Diffraction data. Iodometric titration was used to examine the oxygen stoichiometry and average cobalt oxidation state. Low-temperature magnetic studies show soft ferromagnetic character of fully oxidized material, with theta(P) = 198(3) K and mu(eff) = 2.11(2) mu(B). Electric measurements show the thermally activated nature of conductivity at low temperatures, whereas, due to the variable oxidation and spin state of cobalt, a single charge transport mechanism cannot be distinguished. Around room temperature, a wide transition from thermally activated conductivity to semi-metallic behavior is observed. Under the inert atmosphere, the oxygen content lowers and the cation ordering takes place, leading to coexistence of two, ordered and disordered, phases. As a result of this change, thermally activated conductivity is observed also at high temperatures in inert atmosphere. es_ES
dc.description.sponsorship The authors acknowledge the skillful assistance from the staff of the Swiss-Norwegian Beamline (SNBL), at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The research has been supported by the National Science Centre Poland under m.ERA.net funding scheme (2016/22/Z/ST5/00691). Funding from the Spanish Government (PCIN-2017-125, RTI2018-102161) is kindly acknowledged. Financial and scientific contributions from the Research Council of Norway (Grant no 272797 "GoPHy MiCO") through the M-ERA.NET Joint Call 2016. es_ES
dc.language Inglés es_ES
dc.publisher Blackwell Publishing es_ES
dc.relation.ispartof Journal of the American Ceramic Society es_ES
dc.rights Reserva de todos los derechos es_ES
dc.subject Electrical properties es_ES
dc.subject Magnetic materials es_ES
dc.subject Properties es_ES
dc.subject Perovskites es_ES
dc.title Electric and magnetic properties of Lanthanum Barium Cobaltite es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1111/jace.16865 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/NCN//2016%2F22%2FZ%2FST5%2F00691/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//PCIN-2017-125/ES/PRINCIPIO EN HIDRATACION DE OXIDOS CONDUCTORES MIXTOS/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-102161-B-I00/ES/CONVERSION DIRECTA DE CO2 EN PORTADORES DE ENERGIA QUIMICA UTILIZANDO REACTORES ELECTROCATALITICOS DE MEMBRANA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/RCN//272797/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto Universitario Mixto de Tecnología Química - Institut Universitari Mixt de Tecnologia Química es_ES
dc.description.bibliographicCitation Szpunar, I.; Wachowski, S.; Miruszewski, T.; Dzierzgowski, K.; Gornicka, K.; Klimczuk, T.; Sorby, M.... (2020). Electric and magnetic properties of Lanthanum Barium Cobaltite. Journal of the American Ceramic Society. 103(3):1809-1818. https://doi.org/10.1111/jace.16865 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1111/jace.16865 es_ES
dc.description.upvformatpinicio 1809 es_ES
dc.description.upvformatpfin 1818 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 103 es_ES
dc.description.issue 3 es_ES
dc.relation.pasarela S\428850 es_ES
dc.contributor.funder Research Council of Norway es_ES
dc.contributor.funder National Science Centre, Polonia es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.description.references Ivanova, N. B., Ovchinnikov, S. G., Korshunov, M. M., Eremin, I. M., & Kazak, N. V. (2009). Specific features of spin, charge, and orbital ordering in cobaltites. Physics-Uspekhi, 52(8), 789-810. doi:10.3367/ufne.0179.200908b.0837 es_ES
dc.description.references Nakajima, T., Ichihara, M., & Ueda, Y. (2005). New A-site Ordered Perovskite Cobaltite LaBaCo2O6: Synthesis, Structure, Physical Property and Cation Order–Disorder Effect. Journal of the Physical Society of Japan, 74(5), 1572-1577. doi:10.1143/jpsj.74.1572 es_ES
dc.description.references Strandbakke, R., Cherepanov, V. A., Zuev, A. Y., Tsvetkov, D. S., Argirusis, C., Sourkouni, G., … Norby, T. (2015). Gd- and Pr-based double perovskite cobaltites as oxygen electrodes for proton ceramic fuel cells and electrolyser cells. Solid State Ionics, 278, 120-132. doi:10.1016/j.ssi.2015.05.014 es_ES
dc.description.references Frontera, C., Caneiro, A., Carrillo, A. E., Oró-Solé, J., & García-Muñoz, J. L. (2005). Tailoring Oxygen Content on PrBaCo2O5+δ Layered Cobaltites. Chemistry of Materials, 17(22), 5439-5445. doi:10.1021/cm051148q es_ES
dc.description.references Fauth, F., Suard, E., Caignaert, V., Domengès, B., Mirebeau, I., & Keller, L. (2001). Interplay of structural, magnetic and transport properties in thelayered Co-based perovskite LnBaCo 2 O 5 (Ln = Tb, Dy, Ho). The European Physical Journal B, 21(2), 163-174. doi:10.1007/pl00011119 es_ES
dc.description.references Luo, W., & Wang, F. (2006). Powder X-ray diffraction and Rietveld analysis of La1−xBaxCoO3 (0<x≤0.5). Powder Diffraction, 21(4), 304-306. doi:10.1154/1.2358363 es_ES
dc.description.references Pang, S., Jiang, X., Li, X., Su, Z., Xu, H., Xu, Q., & Chen, C. (2012). Characterization of cation-ordered perovskite oxide LaBaCo2O5+δ as cathode of intermediate-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 37(8), 6836-6843. doi:10.1016/j.ijhydene.2012.01.056 es_ES
dc.description.references Pang, S., Jiang, X., Li, X., Wang, Q., & Su, Z. (2012). A comparative study of electrochemical performance of La0.5Ba0.5CoO3−δ and La0.5Ba0.5CoO3−δ–Gd0.1Ce0.9O1.95 cathodes. International Journal of Hydrogen Energy, 37(3), 2157-2165. doi:10.1016/j.ijhydene.2011.09.156 es_ES
dc.description.references Bernuy-Lopez, C., Høydalsvik, K., Einarsrud, M.-A., & Grande, T. (2016). Effect of A-Site Cation Ordering on Chemical Stability, Oxygen Stoichiometry and Electrical Conductivity in Layered LaBaCo2O5+δ Double Perovskite. Materials, 9(3), 154. doi:10.3390/ma9030154 es_ES
dc.description.references Garcés, D., Setevich, C. F., Caneiro, A., Cuello, G. J., & Mogni, L. (2014). Effect of cationic order–disorder on the transport properties of LaBaCo2O6–δand La0.5Ba0.5CoO3–δperovskites. Journal of Applied Crystallography, 47(1), 325-334. doi:10.1107/s1600576713031233 es_ES
dc.description.references Pang, S. L., Jiang, X. N., Li, X. N., Wang, Q., & Zhang, Q. Y. (2012). Structural stability and high-temperature electrical properties of cation-ordered/disordered perovskite LaBaCoO. Materials Chemistry and Physics, 131(3), 642-646. doi:10.1016/j.matchemphys.2011.10.029 es_ES
dc.description.references Suard, E., Fauth, F., & Caignaert, V. (2000). Rhombohedral distortion in the new disordered LaBaCo2O6 perovskite. Physica B: Condensed Matter, 276-278, 254-255. doi:10.1016/s0921-4526(99)01437-4 es_ES
dc.description.references Goupil, G., Delahaye, T., Sala, B., Lefebvre Joud, F., & Gauthier, G. (2014). Selection and study of basic layered cobaltites as mixed ionic–electronic conductors for proton conducting fuel cells. Solid State Ionics, 263, 15-22. doi:10.1016/j.ssi.2014.04.022 es_ES
dc.description.references Masuda, H., Fujita, T., Miyashita, T., Soda, M., Yasui, Y., Kobayashi, Y., & Sato, M. (2003). Transport and Magnetic Properties of R1-xAxCoO3(R = La, Pr and Nd; A = Ba, Sr and Ca). Journal of the Physical Society of Japan, 72(4), 873-878. doi:10.1143/jpsj.72.873 es_ES
dc.description.references Dyadkin, V., Pattison, P., Dmitriev, V., & Chernyshov, D. (2016). A new multipurpose diffractometer PILATUS@SNBL. Journal of Synchrotron Radiation, 23(3), 825-829. doi:10.1107/s1600577516002411 es_ES
dc.description.references Hauback, B., Fjellvåg, H., Steinsvoll, O., Johansson, K., Buset, O. T., & Jørgensen, J. (2000). The high resolution Powder Neutron Diffractometer PUS at the JEEP II reactor at Kjeller in Norway. Journal of Neutron Research, 8(3), 215-232. doi:10.1080/10238160008200055 es_ES
dc.description.references Rietveld, H. M. (1969). A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2(2), 65-71. doi:10.1107/s0021889869006558 es_ES
dc.description.references Fauth, F., Suard, E., & Caignaert, V. (2001). Intermediate spin state ofCo3+andCo4+ions inLa0.5Ba0.5CoO3evidenced by Jahn-Teller distortions. Physical Review B, 65(6). doi:10.1103/physrevb.65.060401 es_ES
dc.description.references Radaelli, P. G., & Cheong, S.-W. (2002). Structural phenomena associated with the spin-state transition inLaCoO3. Physical Review B, 66(9). doi:10.1103/physrevb.66.094408 es_ES
dc.description.references Lamonova, K. V., Zhitlukhina, E. S., Babkin, R. Y., Orel, S. M., Ovchinnikov, S. G., & Pashkevich, Y. G. (2011). Intermediate-Spin State of a 3d Ion in the Octahedral Environment and Generalization of the Tanabe–Sugano Diagrams. The Journal of Physical Chemistry A, 115(46), 13596-13604. doi:10.1021/jp2071265 es_ES
dc.description.references Toulemonde, O., N’Guyen, N., Studer, F., & Traverse, A. (2001). Spin State Transition in LaCoO3 with Temperature or Strontium Doping as Seen by XAS. Journal of Solid State Chemistry, 158(2), 208-217. doi:10.1006/jssc.2001.9094 es_ES
dc.description.references Troyanchuk, I. O., Bushinsky, M. V., Sikolenko, V. V., & Ritter, C. (2019). Spin Crossover and Magnetic Properties of Ba-Substituted Cobaltites. Journal of Experimental and Theoretical Physics, 128(1), 98-104. doi:10.1134/s1063776119010047 es_ES
dc.description.references Kumar, D., & Banerjee, A. (2013). Coexistence of interacting ferromagnetic clusters and small antiferromagnetic clusters in La0.5Ba0.5CoO3. Journal of Physics: Condensed Matter, 25(21), 216005. doi:10.1088/0953-8984/25/21/216005 es_ES
dc.description.references Rautama, E.-L., Boullay, P., Kundu, A. K., Caignaert, V., Pralong, V., Karppinen, M., & Raveau, B. (2008). Cationic Ordering and Microstructural Effects in the Ferromagnetic Perovskite La0.5Ba0.5CoO3: Impact upon Magnetotransport Properties. Chemistry of Materials, 20(8), 2742-2750. doi:10.1021/cm703314p es_ES
dc.description.references Efros, A. L., & Shklovskii, B. I. (1975). Coulomb gap and low temperature conductivity of disordered systems. Journal of Physics C: Solid State Physics, 8(4), L49-L51. doi:10.1088/0022-3719/8/4/003 es_ES
dc.description.references Mott, N. F. (1968). Conduction in glasses containing transition metal ions. Journal of Non-Crystalline Solids, 1(1), 1-17. doi:10.1016/0022-3093(68)90002-1 es_ES
dc.description.references Phelan, D., Yu, J., & Louca, D. (2008). Jahn-Teller spin polarons in perovskite cobaltites. Physical Review B, 78(9). doi:10.1103/physrevb.78.094108 es_ES
dc.description.references Ambegaokar, V., Halperin, B. ., & Langer, J. . (1972). Theory of hopping conductivity in disordered systems. Journal of Non-Crystalline Solids, 8-10, 492-496. doi:10.1016/0022-3093(72)90182-2 es_ES
dc.description.references Malyshkin, D., Novikov, A., Tsvetkov, D., & Zuev, A. (2018). Preparation, oxygen nonstoichiometry and defect structure of double perovskite LaBaCo2O6–δ. Materials Letters, 229, 324-326. doi:10.1016/j.matlet.2018.07.046 es_ES
dc.description.references Malyshkin, D. A., Novikov, A. Y., Sereda, V. V., Ivanov, I. L., Tsvetkov, D. S., & Zuev, A. Y. (2018). In Situ and ex Situ Study of Cubic La0.5Ba0.5CoO3−δ to Double Perovskite LaBaCo2O6−δ Transition and Formation of Domain Textured Phases with Fast Oxygen Exchange Capability. Inorganic Chemistry, 57(19), 12409-12416. doi:10.1021/acs.inorgchem.8b02167 es_ES
dc.description.references Bernuy-Lopez, C., Rioja-Monllor, L., Nakamura, T., Ricote, S., O’Hayre, R., Amezawa, K., … Grande, T. (2018). Effect of Cation Ordering on the Performance and Chemical Stability of Layered Double Perovskite Cathodes. Materials, 11(2), 196. doi:10.3390/ma11020196 es_ES
dc.description.references Bausá, N., Solís, C., Strandbakke, R., & Serra, J. M. (2017). Development of composite steam electrodes for electrolyzers based on barium zirconate. Solid State Ionics, 306, 62-68. doi:10.1016/j.ssi.2017.03.020 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem