- -

Early deviations in performance, metabolic and immunological indicators affect stayability in rabbit females

RiuNet: Institutional repository of the Polithecnic University of Valencia

Share/Send to

Cited by

Statistics

Early deviations in performance, metabolic and immunological indicators affect stayability in rabbit females

Show simple item record

Files in this item

dc.contributor.author Penadés, M. es_ES
dc.contributor.author Arnau-Bonachera, A. es_ES
dc.contributor.author Selva, L. es_ES
dc.contributor.author Viana, D. es_ES
dc.contributor.author Larsen, T. es_ES
dc.contributor.author Corpa, J. M. es_ES
dc.contributor.author Pascual Amorós, Juan José es_ES
dc.contributor.author Savietto, D. es_ES
dc.date.accessioned 2021-04-24T03:30:53Z
dc.date.available 2021-04-24T03:30:53Z
dc.date.issued 2020-04 es_ES
dc.identifier.issn 1751-7311 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165554
dc.description.abstract [EN] The main purpose of this study was to find several early factors affecting stayability in rabbit females. To reach this goal, 203 females were used from their first artificial insemination to their sixth parturition. Throughout that period, 48 traits were recorded, considered to be performance, metabolic and immunological indicators. These traits were initially recorded in females' first reproductive cycle. Later, removed females due to death or culling and those that were non-removed were identified. A first analysis was used to explore whether it was possible to classify females between those reaching and those not reaching up to the mean lifespan of a rabbit female (the fifth reproductive) cycle using information from the first reproductive cycle. The analysis results showed that 97% of the non-removed females were classified correctly, whereas only 60% of the removed females were classified as animals to be removed. The reason for this difference lies in the model's characteristics, which was designed using early traits and was able to classify only the cases in which females would be removed due to performance, metabolic or immunologic imbalances in their early lives. Our results suggest that the model defines the necessary conditions, but not the sufficient ones, for females to remain alive in the herd. The aim of a second analysis was to find out the main early differences between the non-removed and removed females. The live weights records taken in the first cycle indicated that the females removed in their first cycle were lighter, while those removed in their second cycle were heavier with longer stayability (-203 and +202 g on average, respectively; P < 0.05). Non-removed females showed higher glucose and lower beta-hydroxybutyrate concentrations in the first cycle than the removed females (+4.8 and -10.7%, respectively; P < 0.05). The average lymphocytes B counts in the first cycle were 22.7% higher in the non-removed females group (P < 0.05). The females removed in the first reproductive cycle presented a higher granulocytes/lymphocytes ratio in this cycle than those that at least reached the second cycle (4.81 v. 1.66; P < 0.001). Consequently, non-removed females at sixth parturition offered adequate body development and energy levels, less immunological stress and a more mature immune function in the first reproductive cycle. The females that deviated from this pattern were at higher risk of being removed from the herd. es_ES
dc.description.sponsorship This study was supported by the Interministerial Commission for Science and Technology (CICYT) of the Spanish Government (AGL2014-53405-C2-1-P, AGL2014-53405C2-2-P and AGL2017-85162-C2-1-R). The grants awarded to Mariola Penades and Alberto Arnau from the Spanish Ministry of Education, Culture and Sport (AP2010-3907 and BES-2012-052345, respectively) are also gratefully acknowledged. es_ES
dc.language Inglés es_ES
dc.publisher Cambridge University Press es_ES
dc.relation CICYT/AGL2014-53405-C2-2-P es_ES
dc.relation info:eu-repo/grantAgreement/MECD//AP2010-3907/ES/AP2010-3907/ es_ES
dc.relation MINISTERIO DE ECONOMIA Y EMPRESA/BES-2012-052345 es_ES
dc.relation info:eu-repo/grantAgreement/MINECO//AGL2014-53405-C2-1-P/ES/MEJORA GENETICA DEL CONEJO DE CARNE:RESPUESTA A LA SELECCION Y SU EFECTO SOBRE LA REPRODUCCION, ALIMENTACION Y SALUD UTILIZANDO UNA POBLACION CONTROL CRIOCONSERVADA/ es_ES
dc.relation info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/ es_ES
dc.relation.ispartof Animal es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Early reproduction es_ES
dc.subject Metabolism es_ES
dc.subject Performance es_ES
dc.subject Immune status es_ES
dc.subject Rabbit females es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Early deviations in performance, metabolic and immunological indicators affect stayability in rabbit females es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1017/S1751731119002489 es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Penadés, M.; Arnau-Bonachera, A.; Selva, L.; Viana, D.; Larsen, T.; Corpa, JM.; Pascual Amorós, JJ.... (2020). Early deviations in performance, metabolic and immunological indicators affect stayability in rabbit females. Animal. 14(4):780-789. https://doi.org/10.1017/S1751731119002489 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1017/S1751731119002489 es_ES
dc.description.upvformatpinicio 780 es_ES
dc.description.upvformatpfin 789 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 14 es_ES
dc.description.issue 4 es_ES
dc.identifier.pmid 31647052 es_ES
dc.relation.pasarela S\424790 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Empresa es_ES
dc.contributor.funder Ministerio de Educación, Cultura y Deporte es_ES
dc.contributor.funder Comisión Interministerial de Ciencia y Tecnología es_ES
dc.description.references Baselga M 2004. Genetic improvement of meat rabbits. Programmes and diffusion. In Proceedings of the 8th World Rabbit Congress, 7–10 September 2004, Puebla, Mexico, pp. 1–13. es_ES
dc.description.references Bauman, D. E., & Bruce Currie, W. (1980). Partitioning of Nutrients During Pregnancy and Lactation: A Review of Mechanisms Involving Homeostasis and Homeorhesis. Journal of Dairy Science, 63(9), 1514-1529. doi:10.3168/jds.s0022-0302(80)83111-0 es_ES
dc.description.references Davis, A. K., Maney, D. L., & Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology, 22(5), 760-772. doi:10.1111/j.1365-2435.2008.01467.x es_ES
dc.description.references Davis, W. C., & Hamilton, M. J. (2008). Use of flow cytometry to develop and characterize a set of monoclonal antibodies specific for rabbit leukocyte differentiation molecules. Journal of Veterinary Science, 9(1), 51. doi:10.4142/jvs.2008.9.1.51 es_ES
dc.description.references Dufort F 2012. Contribution of glucose metabolism to the B lymphocyte responses. PhD thesis, Boston College, Boston, MA, USA. es_ES
dc.description.references Friggens, N. C., Brun-Lafleur, L., Faverdin, P., Sauvant, D., & Martin, O. (2013). Advances in predicting nutrient partitioning in the dairy cow: recognizing the central role of genotype and its expression through time. Animal, 7, 89-101. doi:10.1017/s1751731111001820 es_ES
dc.description.references García-Quirós, A., Arnau-Bonachera, A., Penadés, M., Cervera, C., Martínez-Paredes, E., Ródenas, L., … Pascual, J. J. (2014). A robust rabbit line increases leucocyte counts at weaning and reduces mortality by digestive disorder during fattening. Veterinary Immunology and Immunopathology, 161(3-4), 123-131. doi:10.1016/j.vetimm.2014.07.005 es_ES
dc.description.references Gross, W. B., & Siegel, H. S. (1983). Evaluation of the Heterophil/Lymphocyte Ratio as a Measure of Stress in Chickens. Avian Diseases, 27(4), 972. doi:10.2307/1590198 es_ES
dc.description.references Guerrero, I., Ferrian, S., Blas, E., Pascual, J. J., Cano, J. L., & Corpa, J. M. (2011). Evolution of the peripheral blood lymphocyte populations in multiparous rabbit does with two reproductive management rhythms. Veterinary Immunology and Immunopathology, 140(1-2), 75-81. doi:10.1016/j.vetimm.2010.11.017 es_ES
dc.description.references Harano, Y., Ohtsuki, M., Ida, M., Kojima, H., Harada, M., Okanishi, T., … Shigeta, Y. (1985). Direct automated assay method for serum or urine levels of ketone bodies. Clinica Chimica Acta, 151(2), 177-183. doi:10.1016/0009-8981(85)90321-3 es_ES
dc.description.references Jacobsen, C. N., Aasted, B., Broe, M. K., & Petersen, J. L. (1993). Reactivities of 20 anti-human monoclonal antibodies with leucocytes from ten different animal species. Veterinary Immunology and Immunopathology, 39(4), 461-466. doi:10.1016/0165-2427(93)90075-f es_ES
dc.description.references Jasper, P. J., Zhai, S.-K., Kalis, S. L., Kingzette, M., & Knight, K. L. (2003). B Lymphocyte Development in Rabbit: Progenitor B Cells and Waning of B Lymphopoiesis. The Journal of Immunology, 171(12), 6372-6380. doi:10.4049/jimmunol.171.12.6372 es_ES
dc.description.references Jeklova, E., Leva, L., & Faldyna, M. (2007). Lymphoid organ development in rabbits: Major lymphocyte subsets. Developmental & Comparative Immunology, 31(6), 632-644. doi:10.1016/j.dci.2006.10.002 es_ES
dc.description.references Jeklova, E., Leva, L., Knotigova, P., & Faldyna, M. (2009). Age-related changes in selected haematology parameters in rabbits. Research in Veterinary Science, 86(3), 525-528. doi:10.1016/j.rvsc.2008.10.007 es_ES
dc.description.references Jeklova, E., Leva, L., Kudlackova, H., & Faldyna, M. (2007). Functional development of immune response in rabbits. Veterinary Immunology and Immunopathology, 118(3-4), 221-228. doi:10.1016/j.vetimm.2007.05.003 es_ES
dc.description.references Kotani, M., Yamamura, Y., Tamatani, T., Kitamura, F., & Miyasaka, M. (1993). Generation and characterization of monoclomal antibodies against rabbit CD4, CD5 and CD11a antigens. Journal of Immunological Methods, 157(1-2), 241-252. doi:10.1016/0022-1759(93)90093-m es_ES
dc.description.references Kotani, M., Yamamura, Y., Tsudo, M., Tamatani, T., Kitamura, F., & Miyasaka, M. (1993). Generation of Monoclonal Antibodies to the Rabbit Interleukin-2 ReceptoraChain (CD25) and Its Distribution in HTLV-1-transformed Rabbit T Cells. Japanese Journal of Cancer Research, 84(7), 770-775. doi:10.1111/j.1349-7006.1993.tb02042.x es_ES
dc.description.references Martin, O., & Sauvant, D. (2010). A teleonomic model describing performance (body, milk and intake) during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. 2. Voluntary intake and energy partitioning. Animal, 4(12), 2048-2056. doi:10.1017/s1751731110001369 es_ES
dc.description.references Martínez-Paredes, E., Ródenas, L., Pascual, J. J., & Savietto, D. (2018). Early development and reproductive lifespan of rabbit females: implications of growth rate, rearing diet and body condition at first mating. Animal, 12(11), 2347-2355. doi:10.1017/s1751731118000162 es_ES
dc.description.references Mehrzad, J., & Zhao, X. (2008). T lymphocyte proliferative capacity and CD4+/CD8+ ratio in primiparous and pluriparous lactating cows. Journal of Dairy Research, 75(4), 457-465. doi:10.1017/s0022029908003439 es_ES
dc.description.references MILLER, J., & CANCRO, M. (2007). B cells and aging: Balancing the homeostatic equation. Experimental Gerontology, 42(5), 396-399. doi:10.1016/j.exger.2007.01.010 es_ES
dc.description.references Neeteson-van Nieuwenhoven, A.-M., Knap, P., & Avendaño, S. (2013). The role of sustainable commercial pig and poultry breeding for food security. Animal Frontiers, 3(1), 52-57. doi:10.2527/af.2013-0008 es_ES
dc.description.references O’Dowd, S., Hoste, S., Mercer, J. T., Fowler, V. R., & Edwards, S. A. (1997). Nutritional modification of body composition and the consequences for reproductive performance and longevity in genetically lean sows. Livestock Production Science, 52(2), 155-165. doi:10.1016/s0301-6226(97)00131-0 es_ES
dc.description.references Pascual, J. J., Castella, F., Cervera, C., Blas, E., & Fernández-Carmona, J. (2000). The use of ultrasound measurement of perirenal fat thickness to estimate changes in body condition of young female rabbits. Animal Science, 70(3), 435-442. doi:10.1017/s135772980005178x es_ES
dc.description.references Pascual, J. J., Cervera, C., Blas, E., & Fernandez-Carmona, J. (1998). Effect of high fat diets on the performance and food intake of primiparous and multiparous rabbit does. Animal Science, 66(2), 491-499. doi:10.1017/s1357729800009668 es_ES
dc.description.references Piles, M., Garreau, H., Rafel, O., Larzul, C., Ramon, J., & Ducrocq, V. (2006). Survival analysis in two lines of rabbits selected for reproductive traits1. Journal of Animal Science, 84(7), 1658-1665. doi:10.2527/jas.2005-678 es_ES
dc.description.references Quevedo, F., Cervera, C., Blas, E., Baselga, M., & Pascual, J. J. (2006). Long-term effect of selection for litter size and feeding programme on the performance of reproductive rabbit does 2. Lactation and growing period. Animal Science, 82(5), 751-762. doi:10.1079/asc200688 es_ES
dc.description.references Rosell, J. M., & de la Fuente, L. F. (2009). Culling and mortality in breeding rabbits. Preventive Veterinary Medicine, 88(2), 120-127. doi:10.1016/j.prevetmed.2008.08.003 es_ES
dc.description.references Savietto, D., Cervera, C., Blas, E., Baselga, M., Larsen, T., Friggens, N. C., & Pascual, J. J. (2013). Environmental sensitivity differs between rabbit lines selected for reproductive intensity and longevity. Animal, 7(12), 1969-1977. doi:10.1017/s175173111300178x es_ES
dc.description.references Tarrés, J., Tibau, J., Piedrafita, J., Fàbrega, E., & Reixach, J. (2006). Factors affecting longevity in maternal Duroc swine lines. Livestock Science, 100(2-3), 121-131. doi:10.1016/j.livprodsci.2005.08.007 es_ES
dc.description.references Ten Napel, J., van der Veen, A. A., Oosting, S. J., & Koerkamp, P. W. G. G. (2011). A conceptual approach to design livestock production systems for robustness to enhance sustainability. Livestock Science, 139(1-2), 150-160. doi:10.1016/j.livsci.2011.03.007 es_ES
dc.description.references Theilgaard, P., Sánchez, J. P., Pascual, J. J., Friggens, N. C., & Baselga, M. (2006). Effect of body fatness and selection for prolificacy on survival of rabbit does assessed using a cryopreserved control population. Livestock Science, 103(1-2), 65-73. doi:10.1016/j.livsci.2006.01.007 es_ES
dc.description.references Xiccato G 1996. Nutrition of lactation does. In Proceedings of the 6th World Rabbit Congress, 9–12 July 1996, Toulouse, France, pp. 29–47. es_ES


This item appears in the following Collection(s)

Show simple item record