- -

Rederivation by Cryopreservation of a Paternal Line of Rabbits Suggests Exhaustion of Selection for Post-Weaning Daily Weight Gain after 37 Generations

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

Rederivation by Cryopreservation of a Paternal Line of Rabbits Suggests Exhaustion of Selection for Post-Weaning Daily Weight Gain after 37 Generations

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Juarez, Jorge Daniel es_ES
dc.contributor.author Marco-Jiménez, Francisco es_ES
dc.contributor.author Lavara, Raquel es_ES
dc.contributor.author Vicente Antón, José Salvador es_ES
dc.date.accessioned 2021-04-24T03:31:02Z
dc.date.available 2021-04-24T03:31:02Z
dc.date.issued 2020-08 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165556
dc.description.abstract [EN] This study was conducted to evaluate the effect of a long-term selection for post-weaning daily weight gain after 37 generations, using vitrified embryos with 18 generational intervals to rederive two coetaneous populations, reducing or avoiding genetic drift, environmental and cryopreservation effects. This study reports that the selection programme had improved average daily weight gain without variations in adult body weight but, after 37 generations of selection, this trait seems exhausted. Rabbit selection programmes have mainly been evaluated using unselected or divergently selected populations, or populations rederived from cryopreserved embryos after a reduced number of generations. Nevertheless, unselected and divergent populations do not avoid genetic drift, while rederived animals seem to influence phenotypic traits such as birth and adult weights or prolificacy. The study aimed to evaluate the effect of a long-term selection for post-weaning average daily weight gain (ADG) over 37 generations with two rederived populations. Specifically, two coetaneous populations were derived from vitrified embryos with 18 generational intervals (R19 and R37), reducing or avoiding genetic drift and environmental and cryopreservation effects. After two generations of both rederived populations (R21 vs. R39 generations), all evaluated traits showed some progress as a result of the selection, the response being 0.113 g/day by generation. This response does not seem to affect the estimated Gompertz growth curve parameters in terms of the day, the weight at the inflexion point or the adult weight. Moreover, a sexual dimorphism favouring females was observed in this paternal line. Results demonstrated that the selection programme had improved ADG without variations in adult body weight but, after 37 generations of selection, this trait seems exhausted. Given the reduction in the cumulative reproductive performance and as a consequence in the selection pressure, or possibly/perhaps due to an unexpected effect, rederivation could be the cause of this weak selection response observed from generation 18 onwards. es_ES
dc.description.sponsorship Funding from the Ministry of Economy, Industry and Competitiveness (Research project: AGL2014-53405-C2-1-P) is acknowledged. English text version was revised by N. Macowan English Language Service. es_ES
dc.language Inglés es_ES
dc.publisher MDPI AG es_ES
dc.relation.ispartof Animals es_ES
dc.rights Reconocimiento (by) es_ES
dc.subject Selection programme es_ES
dc.subject Embryo vitrification es_ES
dc.subject Gompertz growth curve es_ES
dc.subject Biobanking es_ES
dc.subject Reproductive performance es_ES
dc.subject.classification PRODUCCION ANIMAL es_ES
dc.title Rederivation by Cryopreservation of a Paternal Line of Rabbits Suggests Exhaustion of Selection for Post-Weaning Daily Weight Gain after 37 Generations es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.3390/ani10081436 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//AGL2014-53405-C2-1-P/ES/MEJORA GENETICA DEL CONEJO DE CARNE:RESPUESTA A LA SELECCION Y SU EFECTO SOBRE LA REPRODUCCION, ALIMENTACION Y SALUD UTILIZANDO UNA POBLACION CONTROL CRIOCONSERVADA/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/AGL2017-85162-C2-1-R/ES/MEJORA GENETICA DEL CONEJO DE CARNE: ESTRATEGIAS PARA INCREMENTAR LA EFICACIA DE LA MEJORA, REPRODUCCION Y SALUD DE LINEAS PATERNALES/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Instituto de Ciencia y Tecnología Animal - Institut de Ciència i Tecnologia Animal es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Ciencia Animal - Departament de Ciència Animal es_ES
dc.description.bibliographicCitation Juarez, JD.; Marco-Jiménez, F.; Lavara, R.; Vicente Antón, JS. (2020). Rederivation by Cryopreservation of a Paternal Line of Rabbits Suggests Exhaustion of Selection for Post-Weaning Daily Weight Gain after 37 Generations. Animals. 10(8):1-15. https://doi.org/10.3390/ani10081436 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.3390/ani10081436 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 15 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 10 es_ES
dc.description.issue 8 es_ES
dc.identifier.eissn 2076-2615 es_ES
dc.identifier.pmid 32824532 es_ES
dc.identifier.pmcid PMC7460551 es_ES
dc.relation.pasarela S\418395 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Estany, J., Baselga, M., Blasco, A., & Camacho, J. (1989). Mixed model methodology for the estimation of genetic response to selection in litter size of rabbits. Livestock Production Science, 21(1), 67-75. doi:10.1016/0301-6226(89)90021-3 es_ES
dc.description.references Lukefahr, S. D., Odi, H. B., & Atakora, J. K. (1996). Mass selection for 70-day body weight in rabbits. Journal of Animal Science, 74(7), 1481. doi:10.2527/1996.7471481x es_ES
dc.description.references Nagy, I., Ibáñez, N., Romvári, R., Mekkawy, W., Metzger, S., Horn, P., & Szendrő, Z. (2006). Genetic parameters of growth and in vivo computerized tomography based carcass traits in Pannon White rabbits. Livestock Science, 104(1-2), 46-52. doi:10.1016/j.livsci.2006.03.009 es_ES
dc.description.references Martínez-Álvaro, M., Hernández, P., & Blasco, A. (2016). Divergent selection on intramuscular fat in rabbits: Responses to selection and genetic parameters1. Journal of Animal Science, 94(12), 4993-5003. doi:10.2527/jas.2016-0590 es_ES
dc.description.references Blasco, A., Nagy, I., & Hernández, P. (2018). Genetics of growth, carcass and meat quality in rabbits. Meat Science, 145, 178-185. doi:10.1016/j.meatsci.2018.06.030 es_ES
dc.description.references De Rochambeau, H., de la Fuente, L., Rouvier, R., & Ouhayoun, J. (1989). Sélection sur la vitesse de croissance post-sevrage chez le lapin. Genetics Selection Evolution, 21(4), 527. doi:10.1186/1297-9686-21-4-527 es_ES
dc.description.references Mgheni, M., & Christensen, K. (1985). Selection Experiment on Growth and Litter Size in Rabbits. Acta Agriculturae Scandinavica, 35(3), 287-294. doi:10.1080/00015128509435785 es_ES
dc.description.references Estany, J., Camacho, J., Baselga, M., & Blasco, A. (1992). Selection response of growth rate in rabbits for meat production. Genetics Selection Evolution, 24(6), 527. doi:10.1186/1297-9686-24-6-527 es_ES
dc.description.references Moura, A. S., Kaps, M., Vogt, D. W., & Lamberson, W. R. (1997). Two-way selection for daily gain and feed conversion in a composite rabbit population. Journal of Animal Science, 75(9), 2344. doi:10.2527/1997.7592344x es_ES
dc.description.references Blasco, A., Piles, M., & Varona, L. (2003). A Bayesian analysis of the effect of selection for growth rate on growth curves in rabbits. Genetics Selection Evolution, 35(1). doi:10.1186/1297-9686-35-1-21 es_ES
dc.description.references Piles, M., Gomez, E. A., Rafel, O., Ramon, J., & Blasco, A. (2004). Elliptical selection experiment for the estimation of genetic parameters of the growth rate and feed conversion ratio in rabbits1. Journal of Animal Science, 82(3), 654-660. doi:10.2527/2004.823654x es_ES
dc.description.references Drouilhet, L., Gilbert, H., Balmisse, E., Ruesche, J., Tircazes, A., Larzul, C., & Garreau, H. (2013). Genetic parameters for two selection criteria for feed efficiency in rabbits1. Journal of Animal Science, 91(7), 3121-3128. doi:10.2527/jas.2012-6176 es_ES
dc.description.references Larzul, C., Gondret, F., Combes, S., & de Rochambeau, H. (2005). Divergent selection on 63-day body weight in the rabbit: response on growth, carcass and muscle traits. Genetics Selection Evolution, 37(1), 105. doi:10.1186/1297-9686-37-1-105 es_ES
dc.description.references Piles M., & Blasco A. (2010). RESPONSE TO SELECTION FOR GROWTH RATE IN RABBITS ESTIMATED BY USING A CONTROL CRYOPRESERVED POPULATION. World Rabbit Science, 11(2). doi:10.4995/wrs.2003.497 es_ES
dc.description.references Gondret, F., Combes, S., Larzul, C., & de Rochambeau, H. (2002). Effects of divergent selection for body weight at a fixed age on histological, chemical and rheological characteristics of rabbit muscles. Livestock Production Science, 76(1-2), 81-89. doi:10.1016/s0301-6226(02)00003-9 es_ES
dc.description.references Garcı́a, M. ., & Baselga, M. (2002). Estimation of correlated response on growth traits to selection in litter size of rabbits using a cryopreserved control population and genetic trends. Livestock Production Science, 78(2), 91-98. doi:10.1016/s0301-6226(02)00093-3 es_ES
dc.description.references Piles, M., David, I., Ramon, J., Canario, L., Rafel, O., Pascual, M., … Sánchez, J. P. (2017). Interaction of direct and social genetic effects with feeding regime in growing rabbits. Genetics Selection Evolution, 49(1). doi:10.1186/s12711-017-0333-2 es_ES
dc.description.references Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2014). Long-term and transgenerational effects of cryopreservation on rabbit embryos. Theriogenology, 81(7), 988-992. doi:10.1016/j.theriogenology.2014.01.030 es_ES
dc.description.references Lavara, R., Baselga, M., Marco-Jiménez, F., & Vicente, J. S. (2015). Embryo vitrification in rabbits: Consequences for progeny growth. Theriogenology, 84(5), 674-680. doi:10.1016/j.theriogenology.2015.04.025 es_ES
dc.description.references Garcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., & Vicente, J. S. (2020). Long-Term Phenotypic and Proteomic Changes Following Vitrified Embryo Transfer in the Rabbit Model. Animals, 10(6), 1043. doi:10.3390/ani10061043 es_ES
dc.description.references Garcia-Dominguez, X., Vicente, J. S., & Marco-Jiménez, F. (2020). Developmental Plasticity in Response to Embryo Cryopreservation: The Importance of the Vitrification Device in Rabbits. Animals, 10(5), 804. doi:10.3390/ani10050804 es_ES
dc.description.references Marco-Jiménez, F., Baselga, M., & Vicente, J. S. (2018). Successful re-establishment of a rabbit population from embryos vitrified 15 years ago: The importance of biobanks in livestock conservation. PLOS ONE, 13(6), e0199234. doi:10.1371/journal.pone.0199234 es_ES
dc.description.references García M.L., & Baselga M. (2010). GENETIC RESPONSE TO SELECTION FOR REPRODUCTIVE PERFORMANCE IN A MATERNAL LINE OF RABBITS. World Rabbit Science, 10(2). doi:10.4995/wrs.2002.478 es_ES
dc.description.references Vicente, J.-S., Viudes-de-Castro, M.-P., & García, M.-L. (1999). In vivo survival rate of rabbit morulae after vitrification in a medium without serum protein. Reproduction Nutrition Development, 39(5-6), 657-662. doi:10.1051/rnd:19990511 es_ES
dc.description.references Garcia-Dominguez, X., Marco-Jimenez, F., Viudes-de-Castro, M. P., & Vicente, J. S. (2019). Minimally Invasive Embryo Transfer and Embryo Vitrification at the Optimal Embryo Stage in Rabbit Model. Journal of Visualized Experiments, (147). doi:10.3791/58055 es_ES
dc.description.references Besenfelder, U., & Brem, G. (1993). Laparoscopic embryo transfer in rabbits. Reproduction, 99(1), 53-56. doi:10.1530/jrf.0.0990053 es_ES
dc.description.references Larzul, C., & de Rochambeau, H. (2005). Selection for residual feed consumption in the rabbit. Livestock Production Science, 95(1-2), 67-72. doi:10.1016/j.livprodsci.2004.12.007 es_ES
dc.description.references Martínez-Álvaro, M., Hernández, P., Agha, S., & Blasco, A. (2018). Correlated responses to selection for intramuscular fat in several muscles in rabbits. Meat Science, 139, 187-191. doi:10.1016/j.meatsci.2018.01.026 es_ES
dc.description.references Vicente, J. S., Llobat, L., Viudes-de-Castro, M. P., Lavara, R., Baselga, M., & Marco-Jiménez, F. (2012). Gestational losses in a rabbit line selected for growth rate. Theriogenology, 77(1), 81-88. doi:10.1016/j.theriogenology.2011.07.019 es_ES
dc.description.references Naturil-Alfonso, C., Lavara, R., Millán, P., Rebollar, P. G., Vicente, J. S., & Marco-Jiménez, F. (2016). Study of failures in a rabbit line selected for growth rate. World Rabbit Science, 24(1), 47. doi:10.4995/wrs.2016.4016 es_ES
dc.description.references Blasco, A., & Gómez, E. (1993). A note on growth curves of rabbit lines selected on growth rate or litter size. Animal Science, 57(2), 332-334. doi:10.1017/s000335610000698x es_ES
dc.description.references Cifre, J., Baselga, M., Gómez, E. A., & de la Luz, G. M. (1999). Effect of embryo cryopreservation techniques on reproductive and growth traits in rabbits. Annales de Zootechnie, 48(1), 15-24. doi:10.1051/animres:19990102 es_ES
dc.description.references Vicente, J. S., Saenz-de-Juano, M. D., Jiménez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., & Marco-Jiménez, F. (2013). Rabbit morula vitrification reduces early foetal growth and increases losses throughout gestation. Cryobiology, 67(3), 321-326. doi:10.1016/j.cryobiol.2013.09.165 es_ES
dc.description.references Saenz-de-Juano, M. D., Marco-Jimenez, F., Schmaltz-Panneau, B., Jimenez-Trigos, E., Viudes-de-Castro, M. P., Peñaranda, D. S., … Vicente, J. S. (2014). Vitrification alters rabbit foetal placenta at transcriptomic and proteomic level. REPRODUCTION, 147(6), 789-801. doi:10.1530/rep-14-0019 es_ES
dc.description.references McLaren, A. (1981). Analysis of maternal effects on development in mammals. Reproduction, 62(2), 591-596. doi:10.1530/jrf.0.0620591 es_ES
dc.description.references Cowley, D. E., Pomp, D., Atchley, W. R., Eisen, E. J., & Hawkins-Brown, D. (1989). The impact of maternal uterine genotype on postnatal growth and adult body size in mice. Genetics, 122(1), 193-203. doi:10.1093/genetics/122.1.193 es_ES
dc.description.references Atchley, W. R., Logsdon, T., Cowley, D. E., & Eisen, E. J. (1991). UTERINE EFFECTS, EPIGENETICS, AND POSTNATAL SKELETAL DEVELOPMENT IN THE MOUSE. Evolution, 45(4), 891-909. doi:10.1111/j.1558-5646.1991.tb04358.x es_ES
dc.description.references Naturil-Alfonso, C., Marco-Jiménez, F., Jiménez-Trigos, E., Saenz-de-Juano, M., Viudes-de-Castro, M., Lavara, R., & Vicente, J. (2015). Role of Embryonic and Maternal Genotype on Prenatal Survival and Foetal Growth in Rabbit. Reproduction in Domestic Animals, 50(2), 312-320. doi:10.1111/rda.12493 es_ES
dc.description.references Smith, C. (2010). Use of stored frozen semen and embryos to measure genetic trends in farm livestock. Zeitschrift für Tierzüchtung und Züchtungsbiologie, 94(1-4), 119-130. doi:10.1111/j.1439-0388.1977.tb01541.x es_ES
dc.description.references Ralls, K. (1976). Mammals in Which Females are Larger Than Males. The Quarterly Review of Biology, 51(2), 245-276. doi:10.1086/409310 es_ES
dc.description.references Pascual, M., Pla, M., & Blasco, A. (2008). Effect of selection for growth rate on relative growth in rabbits1,2. Journal of Animal Science, 86(12), 3409-3417. doi:10.2527/jas.2008-0976 es_ES
dc.description.references De la Fuente, L. F., & Rosell, J. M. (2012). Body weight and body condition of breeding rabbits in commercial units1. Journal of Animal Science, 90(9), 3252-3258. doi:10.2527/jas.2011-4764 es_ES
dc.description.references Garcia-Dominguez, X., Marco-Jiménez, F., Peñaranda, D. S., Diretto, G., García-Carpintero, V., Cañizares, J., & Vicente, J. S. (2020). Long-term and transgenerational phenotypic, transcriptional and metabolic effects in rabbit males born following vitrified embryo transfer. Scientific Reports, 10(1). doi:10.1038/s41598-020-68195-9 es_ES
dc.description.references Riggs, R., Mayer, J., Dowling-Lacey, D., Chi, T.-F., Jones, E., & Oehninger, S. (2010). Does storage time influence postthaw survival and pregnancy outcome? An analysis of 11,768 cryopreserved human embryos. Fertility and Sterility, 93(1), 109-115. doi:10.1016/j.fertnstert.2008.09.084 es_ES
dc.description.references Sanchez-Osorio, J., Cuello, C., Gil, M. A., Parrilla, I., Almiñana, C., Caballero, I., … Martinez, E. A. (2010). In vitro postwarming viability of vitrified porcine embryos: Effect of cryostorage length. Theriogenology, 74(3), 486-490. doi:10.1016/j.theriogenology.2010.03.003 es_ES
dc.description.references Fogarty, N. M., Maxwell, W. M. C., Eppleston, J., & Evans, G. (2000). The viability of transferred sheep embryos after long-term cryopreservation. Reproduction, Fertility and Development, 12(2), 31. doi:10.1071/rd00020 es_ES
dc.description.references MOZDARANI, H., & MORADI, S. Z. (2007). Effect of vitrification on viability and chromosome abnormalities in 8-cell mouse embryos at various storage durations. Biological Research, 40(3). doi:10.4067/s0716-97602007000400004 es_ES
dc.description.references Lavara, R., Baselga, M., & Vicente, J. S. (2011). Does storage time in LN2 influence survival and pregnancy outcome of vitrified rabbit embryos? Theriogenology, 76(4), 652-657. doi:10.1016/j.theriogenology.2011.03.018 es_ES
dc.description.references Pascual, J. J., Cervera, C., Blas, E., & Fernandez-Carmona, J. (1998). Effect of high fat diets on the performance and food intake of primiparous and multiparous rabbit does. Animal Science, 66(2), 491-499. doi:10.1017/s1357729800009668 es_ES
dc.description.references Fortun-Lamothe, L., Prunier, A., Bolet, G., & Lebas, F. (1999). Physiological mechanisms involved in the effects of concurrent pregnancy and lactation on foetal growth and mortality in the rabbit. Livestock Production Science, 60(2-3), 229-241. doi:10.1016/s0301-6226(99)00096-2 es_ES
dc.description.references Rebollar, P. G., Pérez-Cabal, M. A., Pereda, N., Lorenzo, P. L., Arias-Álvarez, M., & García-Rebollar, P. (2009). Effects of parity order and reproductive management on the efficiency of rabbit productive systems. Livestock Science, 121(2-3), 227-233. doi:10.1016/j.livsci.2008.06.018 es_ES
dc.description.references Rommers J.M., Kemp B., Meijerhof R., & Noordhuizen J.P.T.M. (2010). REARING MANAGEMENT OF RABBIT DOES : A REVIEW. World Rabbit Science, 7(3). doi:10.4995/wrs.1999.390 es_ES
dc.description.references Fortun-Lamothe, L., & Prunier, A. (1999). Effects of lactation, energetic deficit and remating interval on reproductive performance of primiparous rabbit does. Animal Reproduction Science, 55(3-4), 289-298. doi:10.1016/s0378-4320(99)00020-2 es_ES
dc.description.references Fortun-Lamothe, L. (2006). Energy balance and reproductive performance in rabbit does. Animal Reproduction Science, 93(1-2), 1-15. doi:10.1016/j.anireprosci.2005.06.009 es_ES
dc.description.references Maertens L., Lebas F., & Szendro ZS. (2010). Rabbit milk: A review of quantity, quality and non-dietary affecting factors. World Rabbit Science, 14(4). doi:10.4995/wrs.2006.565 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem