- -

A TV-based image processing framework for blind color deconvolution and classification of histological images

RiuNet: Repositorio Institucional de la Universidad Politécnica de Valencia

Compartir/Enviar a

Citas

Estadísticas

  • Estadisticas de Uso

A TV-based image processing framework for blind color deconvolution and classification of histological images

Mostrar el registro sencillo del ítem

Ficheros en el ítem

dc.contributor.author Pérez-Bueno, Fernando es_ES
dc.contributor.author López-Pérez, Miguel es_ES
dc.contributor.author Vega, Miguel es_ES
dc.contributor.author Mateos, Javier es_ES
dc.contributor.author Naranjo Ornedo, Valeriana es_ES
dc.contributor.author Molina, Rafael es_ES
dc.contributor.author Katsaggelos, Aggelos K. es_ES
dc.date.accessioned 2021-04-27T03:32:42Z
dc.date.available 2021-04-27T03:32:42Z
dc.date.issued 2020-06 es_ES
dc.identifier.issn 1051-2004 es_ES
dc.identifier.uri http://hdl.handle.net/10251/165602
dc.description.abstract [EN] In digital histopathological image analysis, two conflicting objectives are often pursued: closeness to the original tissue and high classification performance. The former objective tries to recover images (stains) that are as close as possible to the ones obtained by staining the tissue with a single dye. The latter objective requires images that allow the extraction of better features for an improved classification, even if their appearance is not close to single stained tissues. In this paper we propose a framework that achieves both objectives depending on the number of stains used to mathematically decompose the scanned image. The proposed framework uses a total variation prior for each stain together with the similarity to a given reference color-vector matrix. Variational inference and an evidence lower bound are utilized to automatically estimate all the latent variables and model parameters. The proposed methodology is tested on real images and compared to classical and state-of-the-art methods for histopathological blind image color deconvolution and prostate cancer classification. es_ES
dc.description.sponsorship This work was sponsored in part by Ministerio de Ciencia e Innovacion under Contract BES-2017-081584 and project DPI2016-77869-C2-2-R. es_ES
dc.language Inglés es_ES
dc.publisher Elsevier es_ES
dc.relation.ispartof Digital Signal Processing es_ES
dc.rights Reconocimiento - No comercial - Sin obra derivada (by-nc-nd) es_ES
dc.subject Blind color deconvolution es_ES
dc.subject Histopathological images es_ES
dc.subject Variational Bayes es_ES
dc.subject Prostate cancer es_ES
dc.subject.classification TEORIA DE LA SEÑAL Y COMUNICACIONES es_ES
dc.title A TV-based image processing framework for blind color deconvolution and classification of histological images es_ES
dc.type Artículo es_ES
dc.identifier.doi 10.1016/j.dsp.2020.102727 es_ES
dc.relation.projectID info:eu-repo/grantAgreement/AEI//BES-2017-081584/ es_ES
dc.relation.projectID info:eu-repo/grantAgreement/MINECO//DPI2016-77869-C2-1-R/ES/SISTEMA DE INTERPRETACION DE IMAGENES HISTOPATOLOGICAS PARA LA DETECCION DE CANCER DE PROSTATA/ es_ES
dc.rights.accessRights Abierto es_ES
dc.contributor.affiliation Universitat Politècnica de València. Departamento de Comunicaciones - Departament de Comunicacions es_ES
dc.description.bibliographicCitation Pérez-Bueno, F.; López-Pérez, M.; Vega, M.; Mateos, J.; Naranjo Ornedo, V.; Molina, R.; Katsaggelos, AK. (2020). A TV-based image processing framework for blind color deconvolution and classification of histological images. Digital Signal Processing. 101:1-13. https://doi.org/10.1016/j.dsp.2020.102727 es_ES
dc.description.accrualMethod S es_ES
dc.relation.publisherversion https://doi.org/10.1016/j.dsp.2020.102727 es_ES
dc.description.upvformatpinicio 1 es_ES
dc.description.upvformatpfin 13 es_ES
dc.type.version info:eu-repo/semantics/publishedVersion es_ES
dc.description.volume 101 es_ES
dc.relation.pasarela S\408406 es_ES
dc.contributor.funder Agencia Estatal de Investigación es_ES
dc.contributor.funder Ministerio de Economía y Competitividad es_ES
dc.description.references Azevedo Tosta, T. A., de Faria, P. R., Neves, L. A., & do Nascimento, M. Z. (2019). Computational normalization of H&E-stained histological images: Progress, challenges and future potential. Artificial Intelligence in Medicine, 95, 118-132. doi:10.1016/j.artmed.2018.10.004 es_ES
dc.description.references Bautista, P. A., & Yagi, Y. (2015). Staining Correction in Digital Pathology by Utilizing a Dye Amount Table. Journal of Digital Imaging, 28(3), 283-294. doi:10.1007/s10278-014-9766-0 es_ES
dc.description.references Reinhard, E., Adhikhmin, M., Gooch, B., & Shirley, P. (2001). Color transfer between images. IEEE Computer Graphics and Applications, 21(4), 34-41. doi:10.1109/38.946629 es_ES
dc.description.references Vahadane, A., Peng, T., Sethi, A., Albarqouni, S., Wang, L., Baust, M., … Navab, N. (2016). Structure-Preserving Color Normalization and Sparse Stain Separation for Histological Images. IEEE Transactions on Medical Imaging, 35(8), 1962-1971. doi:10.1109/tmi.2016.2529665 es_ES
dc.description.references Xu, J., Xiang, L., Wang, G., Ganesan, S., Feldman, M., Shih, N. N., … Madabhushi, A. (2015). Sparse Non-negative Matrix Factorization (SNMF) based color unmixing for breast histopathological image analysis. Computerized Medical Imaging and Graphics, 46, 20-29. doi:10.1016/j.compmedimag.2015.04.002 es_ES
dc.description.references Gavrilovic, M., Azar, J. C., Lindblad, J., Wahlby, C., Bengtsson, E., Busch, C., & Carlbom, I. B. (2013). Blind Color Decomposition of Histological Images. IEEE Transactions on Medical Imaging, 32(6), 983-994. doi:10.1109/tmi.2013.2239655 es_ES
dc.description.references Khan, A. M., Rajpoot, N., Treanor, D., & Magee, D. (2014). A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution. IEEE Transactions on Biomedical Engineering, 61(6), 1729-1738. doi:10.1109/tbme.2014.2303294 es_ES
dc.description.references Alsubaie, N., Trahearn, N., Raza, S. E. A., Snead, D., & Rajpoot, N. M. (2017). Stain Deconvolution Using Statistical Analysis of Multi-Resolution Stain Colour Representation. PLOS ONE, 12(1), e0169875. doi:10.1371/journal.pone.0169875 es_ES
dc.description.references Zheng, Y., Jiang, Z., Zhang, H., Xie, F., Shi, J., & Xue, C. (2019). Adaptive color deconvolution for histological WSI normalization. Computer Methods and Programs in Biomedicine, 170, 107-120. doi:10.1016/j.cmpb.2019.01.008 es_ES
dc.description.references Roy, S., kumar Jain, A., Lal, S., & Kini, J. (2018). A study about color normalization methods for histopathology images. Micron, 114, 42-61. doi:10.1016/j.micron.2018.07.005 es_ES
dc.description.references Villena, S., Vega, M., Molina, R., & Katsaggelos, A. K. (2014). A non-stationary image prior combination in super-resolution. Digital Signal Processing, 32, 1-10. doi:10.1016/j.dsp.2014.05.017 es_ES
dc.description.references Ruiz, P., Zhou, X., Mateos, J., Molina, R., & Katsaggelos, A. K. (2015). Variational Bayesian Blind Image Deconvolution: A review. Digital Signal Processing, 47, 116-127. doi:10.1016/j.dsp.2015.04.012 es_ES
dc.description.references Babacan, S. D., Molina, R., & Katsaggelos, A. K. (2008). Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation. IEEE Transactions on Image Processing, 17(3), 326-339. doi:10.1109/tip.2007.916051 es_ES
dc.description.references Esteban, Á. E., López-Pérez, M., Colomer, A., Sales, M. A., Molina, R., & Naranjo, V. (2019). A new optical density granulometry-based descriptor for the classification of prostate histological images using shallow and deep Gaussian processes. Computer Methods and Programs in Biomedicine, 178, 303-317. doi:10.1016/j.cmpb.2019.07.003 es_ES
dc.description.references Guo, Z., Zhang, L., & Zhang, D. (2010). Rotation invariant texture classification using LBP variance (LBPV) with global matching. Pattern Recognition, 43(3), 706-719. doi:10.1016/j.patcog.2009.08.017 es_ES
dc.description.references Valkonen, M., Kartasalo, K., Liimatainen, K., Nykter, M., Latonen, L., & Ruusuvuori, P. (2017). Metastasis detection from whole slide images using local features and random forests. Cytometry Part A, 91(6), 555-565. doi:10.1002/cyto.a.23089 es_ES
dc.description.references Opper, M., & Archambeau, C. (2009). The Variational Gaussian Approximation Revisited. Neural Computation, 21(3), 786-792. doi:10.1162/neco.2008.08-07-592 es_ES


Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem